

Form Factors for $B \to \pi \pi l \nu$

Christoph Hanhart

Forschungszentrum Jülich

In collaboration with

X.-W. Kang, B. Kubis, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba

Form Factors for $B \rightarrow \pi \pi l \nu$ – p. 1/20

Motivation

There is tension in the values for V_{ub} :

R. Kowalewski, T. Mannel; mini-review in RPP (PDG)

 $|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17})$ inclusive from $\bar{B} \to X_u l \bar{\nu}_l$

 $|V_{ub}| = (3.82 \pm 0.29)$ exclusive from $\bar{B} \to \pi l \bar{\nu}_l$

 \rightarrow an alternative, exclusive extraction is needed. Candidate: $\overline{B} \rightarrow \rho l \overline{\nu}_l$ Data with sizable uncertainties by CLEO and BaBar

Relevant theoretical issues: what is measured is $\bar{B} \rightarrow \pi \pi l \bar{\nu}_l$

- \rightarrow How to parametrize the ρ with controlled uncertainties
- \rightarrow How much $f_0(500)$ (s-wave) is there?

Both will be addressed here for some special kinematics

Outline

- How to treat hadronic few body systems
 - Unitarity relation
 - Remarks on dispersion theory: the Omnès function
- Illustration of universality of final state interactions
 - $\triangleright~{\sf A}$ model independent data analysis for $\eta\to\pi\pi\gamma$
 - $\triangleright \text{ Relating } \eta \to \pi \pi \gamma \text{ to } \eta \to \gamma \gamma^*$
- $\bar{B} \to \pi \pi l \bar{\nu}_l$
 - Inclusion of left—hand cuts
 - Results
- Outlook? some ideas ...

Modeling hadron physics

Standard treatment: sum of Breit-Wigners

Propagator: $iG_k(s) = \frac{1}{k} = i/(s - M_k^2 + iM_k\Gamma_k)$

Scattering:

Problems:

- \rightarrow Wrong threshold behavior (cured by $\Gamma = \Gamma(s)$)
- \rightarrow Violates unitarity \rightarrow wrong phase motion
- \rightarrow Parameters reaction dependent only pole positions and resides universal!

 $\operatorname{disc}(F)/2i = \operatorname{Im}(F) = e^{-i\delta(s)}\sin(\delta(s)) \times \theta(s - 4m_{\pi}^2) \times F(s)$

 \rightarrow Watson theorem: $F(s) = |F(s)|e^{i\delta(s)}$ and Omnès function

$$\Omega(s) = \exp\left(\frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s-i\epsilon)}\right)$$

 $\Omega(s)$ is universal and fixed by $\delta(s)$

Such that we may write

$$F(s) = P(s)\Omega(s)$$

- P(s) reaction specific
- → left-hand cuts
- \rightarrow higher thresholds
- \rightarrow inel. resonances

Status for $\Omega(\mathbf{s})$

Form Factors for $B \rightarrow \pi \pi l \nu$ – p. 6/20

Illustration of universality of FSI

Form Factors for $B \rightarrow \pi \pi l \nu$ – p. 7/20

400

Illustration of universality of FSI

We had: $F(Q^2) = P(Q^2)\Omega(Q^2)$

We find for all 3 cases

• $P(Q^2)$ linear for $Q^2 < 1 \text{ GeV}^2$

IÜLICH

- deviations in F_V by ρ' & ρ''

$$P(Q^2) = A_0(1 + \alpha Q^2)$$

$$\alpha[\gamma] = (0.12 \pm 0.01) \text{ GeV}^{-2};$$

 $\alpha[\eta\gamma] = (1.4 \pm 0.1) \text{ GeV}^{-2}$

- $\rightarrow \alpha$ reaction specific
- $\rightarrow \alpha[\eta] = \alpha[\eta']$ understood

1-loop ChPT + large N_c

F. Stollenwerk et al., PLB 707, 184 (2012)

Allows for parameter free prediction for isovector part of slope

$$F_{\eta\gamma^{\star}\gamma}(Q^{2},0) \equiv 1 + \Delta F_{\eta\gamma^{\star}\gamma}^{(I=1)}(Q^{2},0) + \Delta F_{\eta\gamma^{\star}\gamma}^{(I=0)}(Q^{2},0)$$
$$\Delta F_{\eta\gamma^{\star}\gamma}^{(I=1)} = \left(\frac{\kappa_{\eta}Q^{2}}{96\pi^{2}f_{\pi}^{2}}\right) \int_{4m_{\pi}^{2}}^{\infty} ds' \,\sigma_{\pi}(s')^{3} P(s') \,\frac{|F_{V}(s')|^{2}}{s'-Q^{2}-i\epsilon}$$
$$\Delta F_{\eta\gamma^{\star}\gamma}^{(I=0)} \text{ needs to be modeled}$$

We thus demonstrated:

- $\eta \to \gamma \gamma^*$ and $\eta \to \pi^+ \pi^- \gamma$ closely connected
- FSI ($\Omega(Q^2)$) universal; driven by ρ -pole and residues
- $P(Q^2)$ (reaction dependent!) also modifies $\eta \to \gamma^* \gamma$

C. H. et al. Eur.Phys.J. C73 (2013) 2668.

Results

Successful description of data with small uncertainties

 $B \to \pi \pi l \nu (B_{l4})$

The matrix element reads:

Bijnens et al., NPB427(1994)427 (K₁₄)

$$T = \frac{G_F}{\sqrt{2}} V_{ub}^* \bar{\psi}_\nu(p_\nu) \gamma^\mu (1 - \gamma_5) \psi_l(p_l) I_\mu ,$$

with the hadronic current:

$$\begin{split} I_{\mu} &= \langle \pi^{+}(p_{+})\pi^{-}(p_{-})|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}(p_{B})\rangle \\ &= -\frac{i}{m_{B}}(P_{\mu}F + Q_{\mu}G + L_{\mu}R - (H/m_{B}^{3})\epsilon_{\mu\nu\rho\sigma}L^{\nu}P^{\rho}Q^{\sigma} \\ \text{with } P &= p_{+} + p_{-}, \, Q = p_{+} - p_{-}, \, L = p_{l} + p_{\nu} \end{split}$$

goal: Extraction of V_{ub} with controlled uncertainty

→ Full command of the shape of the form factors
where l_{min} = 0 for F, R and l_{min} = 1 for G, H
→ A fixed normalization

Tools

adapted from Faller et al., PRD89(2014)014015

Note: dispersive approach valid for full s_l range

But: we can not (yet?) control s_l dependence outside red area

Yellow area needs different methods

e.g., Faller et al., PRD89(2014)014015

Some details ...

at leading order: $B \to \pi \pi \ell \nu$ given by B^* pole terms determined by $g_{B^*B\pi}$ and f_B Burdman & Donoghue, PLB280(1992)287

 $B \quad B^* \qquad B \quad B^* \quad B/B^*$

 \rightarrow Left-hand cut/ square root singularity at s = 0

Form Factors for $B \rightarrow \pi \pi l \nu$ – p. 13/20

Kang et al., PRD89(2014)053015

$$\operatorname{disc}(F(s, s_l)) = 2i\left\{\underbrace{F(s, s_l)}_{\text{right-hand cut}} + \underbrace{\widehat{M}(s, s_l)}_{\text{left-hand cut}}\right\} \times \theta(s - 4 m_{\pi}^2) \times \sin \delta(s) e^{-i\delta(s)}$$

→ inhomogeneities $\hat{M}(s, s_l)$: angular averages of pole terms We get, e.g., for *P*-waves

$$F(s, s_l) = \Omega_1^1(s) \left\{ a_0(s_l) + a_1(s_l)s + \frac{\cos \delta_1^1(s) \hat{M}(s, s_l)}{|\Omega_1^1(s)|} + \frac{s^2}{\pi} P \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{M}(s', s_l)}{|\Omega_1^1(s')|(s'-s)} \right\} \xrightarrow{B^+} B^*$$

 \rightarrow Pole terms introduce s_l dependence.

Results: form factors

- \rightarrow line shapes get distorted
- \rightarrow effect depends on s_l (here: $s_l = (M_B 1 \text{ GeV})^2$)

Form Factors for $B \rightarrow \pi \pi l \nu$ – p. 15/20

Results: B_{l4} rates

 \rightarrow For $s_l \sim M_B^2$ S– and P–wave strengths fixed

→ For s < 1 GeV² shapes fixed → inclusion of experimental cuts straightforward

Summary

- A combination of
 - Heavy-Meson ChPT and
 - dispersion theory
- enabled us to treat $B \rightarrow \pi \pi l \bar{\nu}_l$
 - model independently with
 - controlled uncertainties.

Preconditions for extraction of V_{ub}

However, applicable in very limited kinematic regime only

- How could this range be extended?
- Are there possible synergies with lattice QCD?

Strategies I:

Test for overlap regions of the various effective theories and/or for proper interpolations see Faller et al., PRD89(2014)014015 Use model to extend *s*-region: \rightarrow inelastic resonances C.H. PLB715(2012)170

Should allow one to include a lot more data in fits reduced uncertainty of V_{ub} extraction

 π

 W^+

Strategies II:

- Dispersion theory to overcome narrow width approximation
- What is measured in experiment

 π

 B^+

 $V^{\mu}(s)$

 B^+

on the lattice

 π

cf. discussion on $\eta \to \pi \pi \gamma \iff \eta \to \gamma \gamma^*$

 π

 W^+

Strategies II:

- Dispersion theory to overcome narrow width approximation
- What is measured in experiment

on the lattice

Dispersion theory provides a well defined connection!

cf. discussion on $\eta \to \pi \pi \gamma \iff \eta \to \gamma \gamma^*$

THANKS A LOT FOR YOUR ATTENTION