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Motivation

There is tension in the values for Vub:
R. Kowalewski, T. Mannel; mini-review in RPP (PDG)

|Vub| = (4.41± 0.15+0.15
−0.17) inclusive from B̄ → Xulν̄l

|Vub| = (3.82± 0.29) exclusive from B̄ → πlν̄l

−→ an alternative, exclusive extraction is needed.

Candidate: B̄ → ρlν̄l
Data with sizable uncertainties by CLEO and BaBar

Relevant theoretical issues: what is measured is B̄ → ππlν̄l

→ How to parametrize the ρ with controlled uncertainties

→ How much f0(500) (s-wave) is there?

Both will be addressed here for some special kinematics
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Outline

• How to treat hadronic few body systems

⊲ Unitarity relation

⊲ Remarks on dispersion theory: the Omnès function

• Illustration of universality of final state interactions

⊲ A model independent data analysis for η → ππγ

⊲ Relating η → ππγ to η → γγ∗

• B̄ → ππlν̄l
⊲ Inclusion of left–hand cuts

⊲ Results

• Outlook? — some ideas ...

Form Factors for B → ππlν – p. 3/20



Modeling hadron physics

Standard treatment: sum of Breit-Wigners

Propagator: iGk(s) = k = i/(s−M2
k + iMkΓk)

Scattering: Σ
k k

=
∑

k ig
2
kGk(s)

Production: Σ
k k

=
(∑

k igkGk(s)αk
)
+ iβ

Problems:

→ Wrong threshold behavior (cured by Γ = Γ(s))

→ Violates unitarity −→ wrong phase motion

→ Parameters reaction dependent
only pole positions and resides universal!
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Unitarity relation

=disc

disc(F )/2i = Im(F ) = e−iδ(s) sin(δ(s))× θ(s− 4m2
π)× F (s)

→ Watson theorem: F (s) = |F (s)|eiδ(s) and Omnès function

Ω(s) = exp

(
s

π

∫ ∞

4m2
π

ds′
δ(s′)

s′(s′ − s− iǫ)

)

Ω(s) is universal
and fixed by δ(s)

Such that we may write

F (s) = P (s)Ω(s)

P (s) reaction specific

→ left-hand cuts

→ higher thresholds

→ inel. resonances
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Status for Ω(s)
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Illustration of universality of FSI

FV from τ− → π−π0ντ
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red lines: p-wave Omnès
× kinematic factors

• bulk described properly

• there are deviations
−→ P (s) not constant!

η → π+π−γ η′ → π+π−γ
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Illustration of universality of FSI

FV from τ− → π−π0ντ
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We had: F (Q2) = P (Q2)Ω(Q2)

We find for all 3 cases

• P (Q2) linear for Q2 < 1 GeV2

• deviations in FV by ρ′ & ρ′′

η → π+π−γ
η′ → π+π−γ
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P (Q2) = A0(1 + αQ2)

α[γ]=(0.12±0.01) GeV−2;

α[ηγ]=(1.4±0.1) GeV−2

→ α reaction specific

→ α[η] = α[η′] understood
1-loop ChPT + large Nc

F. Stollenwerk et al., PLB 707, 184 (2012)
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Going to η → γγ∗

Allows for parameter free prediction for isovector part of slope

η

γ

π+

π−

γ∗

PFV

F ∗
V

×Aη
ππγ

×e

Fηγ⋆γ(Q
2, 0)≡1+∆F

(I=1)
ηγ⋆γ (Q2, 0)+∆F

(I=0)
ηγ⋆γ (Q2, 0)

∆F
(I=1)
ηγ⋆γ =

(
κηQ

2

96π2f2
π

) ∫∞
4m2

π
ds′ σπ(s

′)3 P (s′)
|FV (s′)|2

s′−Q2−iǫ

∆F
(I=0)
ηγ⋆γ needs to be modeled

We thus demonstrated:

• η → γγ∗ and η → π+π−γ closely connected

• FSI (Ω(Q2)) universal; driven by ρ-pole and residues

• P (Q2) (reaction dependent!) also modifies η → γ∗γ

C. H. et al. Eur.Phys.J. C73 (2013) 2668.
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Results
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Successful description of data with small uncertainties
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B → ππlν (Bl4)

The matrix element reads: Bijnens et al., NPB427(1994)427 (Kl4)

T =
GF√
2
V ∗
ubψ̄ν(pν)γ

µ(1− γ5)ψl(pl)Iµ ,

with the hadronic current:

Iµ = 〈π+(p+)π−(p−)|ūγµ(1− γ5)b|B−(pB)〉
= − i

mB
(PµF +QµG+ LµR− (H/m3

B)ǫµνρσL
νP ρQσ

with P = p+ + p−, Q = p+ − p−, L = pl + pν

goal: Extraction of Vub with controlled uncertainty

→ Full command of the shape of the form factors

where lmin = 0 for F,R and lmin = 1 for G,H

→ A fixed normalization
Form Factors for B → ππlν – p. 11/20



Tools

We are going to use

→ Dispersion theory
to fix shapes

−→ s = P 2 < 1 GeV2

→ Heavy Meson ChPT
to fix norm

−→ sl = L2 ≃M2
B

0 smax
l

sl
s

4m2
π

M2
B

adapted from Faller et al., PRD89(2014)014015

Note: dispersive approach valid for full sl range

But: we can not (yet?) control sl dependence outside red area

Yellow area needs different methods e.g., Faller et al., PRD89(2014)014015

Form Factors for B → ππlν – p. 12/20



Some details ...

at leading order: B → ππℓν given by B∗ pole terms

determined by gB∗Bπ and fB Burdman & Donoghue, PLB280(1992)287
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B B∗ B/B∗

−→ Left-hand cut/ square root singularity at s = 0
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Inclusion of left-hand cut
Kang et al., PRD89(2014)053015

disc(F (s, sl)) = 2i
{
F (s, sl)
︸ ︷︷ ︸

right-hand cut

+ M̂(s, sl)
︸ ︷︷ ︸

left-hand cut

}
×θ(s−4m2

π)×sin δ(s) e−iδ(s)

→ inhomogeneities M̂(s, sl): angular averages of pole terms
We get, e.g., for P–waves

F (s, sl) = Ω1
1(s)

{

a0(sl) + a1(sl)s

+
cos δ11(s)M̂(s, sl)

|Ω1
1(s)|

+
s2

π
P

∫ ∞

4m2
π

ds′

s′2
sin δ11(s

′)M̂(s′, sl)

|Ω1
1(s

′)|(s′ − s)

} B+

B∗

π π
W+

→ Pole terms introduce sl dependence.
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Results: form factors
left-hand cut / square-root singularity at
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→ line shapes get distorted

→ effect depends on sl (here: sl = (MB − 1 GeV)2)
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Results: Bl4 ratesheavy-meson ChPT: similtaneous chiral and expansion
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Kang et al. 2013

→ For sl ∼M2
B S– and P–wave strengths fixed

→ For s < 1 GeV2 shapes fixed
→ inclusion of experimental cuts straightforward
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Summary

A combination of

• Heavy-Meson ChPT and

• dispersion theory

enabled us to treat B → ππlν̄l

• model independently with

• controlled uncertainties.

Preconditions for extraction of Vub

However, applicable in very limited kinematic regime only

How could this range be extended?

Are there possible synergies with lattice QCD?
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Outlook - some ideas ...

Strategies I:

0

Soft−Collinear ET

QCD−Factorization

smax
l

sl

s

4m2
π

M2
B

Test for overlap regions of

the various effective theories

and/or for proper interpolations

see Faller et al., PRD89(2014)014015

Use model to extend s–region:

→ inelastic resonances

C.H. PLB715(2012)170

Should allow one to include a lot more data in fits

reduced uncertainty of Vub extraction
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Outlook - some ideas ...

Strategies II:

Dispersion theory to overcome narrow width approximation

What is measured

in experiment

B+

π π

W+

on the lattice

B+

π π

W+

V µ(s)

Dispersion theory provides a well defined connection!

cf. discussion on η → ππγ ←→ η → γγ∗
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Outlook - some ideas ...

Strategies II:

Dispersion theory to overcome narrow width approximation

What is measured

in experiment

B+

π π

W+

on the lattice

B+

π π

W+

V µ(s)

Dispersion theory provides a well defined connection!

cf. discussion on η → ππγ ←→ η → γγ∗

THANKS A LOT FOR YOUR ATTENTION
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