Form Factors for $B \rightarrow \pi \pi l \nu$

Christoph Hanhart

Forschungszentrum Jülich

In collaboration with

X.-W. Kang, B. Kubis, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba

Motivation

There is tension in the values for $V_{u b}$:
R. Kowalewski, T. Mannel; mini-review in RPP (PDG)

$$
\begin{array}{ll}
\left|V_{u b}\right|=\left(4.41 \pm 0.15_{-0.17}^{+0.15}\right) & \text { inclusive from } \bar{B} \rightarrow X_{u} l \bar{\nu}_{l} \\
\left|V_{u b}\right|=(3.82 \pm 0.29) & \text { exclusive from } \bar{B} \rightarrow \pi l \bar{\nu}_{l}
\end{array}
$$

\longrightarrow an alternative, exclusive extraction is needed. Candidate: $\bar{B} \rightarrow \rho l \bar{\nu}_{l}$

Relevant theoretical issues: what is measured is $\bar{B} \rightarrow \pi \pi l \bar{\nu}_{l}$
\rightarrow How to parametrize the ρ with controlled uncertainties
\rightarrow How much $f_{0}(500)$ (s-wave) is there?
Both will be addressed here for some special kinematics

Outline

- How to treat hadronic few body systems
\triangleright Unitarity relation
\triangleright Remarks on dispersion theory: the Omnès function
- Illustration of universality of final state interactions
\triangleright A model independent data analysis for $\eta \rightarrow \pi \pi \gamma$
\triangleright Relating $\eta \rightarrow \pi \pi \gamma$ to $\eta \rightarrow \gamma \gamma^{*}$
- $\bar{B} \rightarrow \pi \pi l \bar{\nu}_{l}$
\triangleright Inclusion of left-hand cuts
\triangleright Results
- Outlook? - some ideas ...

Modeling hadron physics

Standard treatment: sum of Breit-Wigners

$$
\text { Propagator: } i G_{k}(s)=\varlimsup_{k}=i /\left(s-M_{k}^{2}+i M_{k} \Gamma_{k}\right)
$$

Scattering:

$$
=\sum_{k} i g_{k}^{2} G_{k}(s)
$$

Production:

$$
\sum_{k} \otimes=+\otimes=\left(\sum_{k} i g_{k} G_{k}(s) \alpha_{k}\right)+i \beta
$$

Problems:
\rightarrow Wrong threshold behavior (cured by $\Gamma=\Gamma(s)$)
\rightarrow Violates unitarity \longrightarrow wrong phase motion
\rightarrow Parameters reaction dependent only pole positions and resides universal!

Unitarity relation

$$
\operatorname{disc}(F) / 2 i=\operatorname{Im}(F)=e^{-i \delta(s)} \sin (\delta(s)) \times \theta\left(s-4 m_{\pi}^{2}\right) \times F(s)
$$

\rightarrow Watson theorem: $F(s)=|F(s)| e^{i \delta(s)}$ and Omnès function

$$
\Omega(s)=\exp \left(\frac{s}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \epsilon\right)}\right) \quad \begin{aligned}
& \Omega(s) \text { is universal } \\
& \text { and fixed by } \delta(s)
\end{aligned}
$$

Such that we may write

$$
F(s)=P(s) \Omega(s)
$$

$P(s)$ reaction specific
\rightarrow left-hand cuts
\rightarrow higher thresholds
\rightarrow inel. resonances

Status for $\Omega(\mathrm{s})$
J Ј Јйісн
FORSCHUNGSZENTRUM

give for

δ : Garcia-Martin et al., PRD83(2011)074004; FF's: Daub et al., JHEP01 (2013)179

Illustration of universality of FSI

red lines: p-wave Omnès \times kinematic factors

- bulk described properly
- there are deviations
$\longrightarrow P(s)$ not constant!

Illustration of universality of FSI

We had: $F\left(Q^{2}\right)=P\left(Q^{2}\right) \Omega\left(Q^{2}\right)$
We find for all 3 cases

- $P\left(Q^{2}\right)$ linear for $Q^{2}<1 \mathrm{GeV}^{2}$
- deviations in F_{V} by $\rho^{\prime} \& \rho^{\prime \prime}$

$$
P\left(Q^{2}\right)=A_{0}\left(1+\alpha Q^{2}\right)
$$

$\alpha[\gamma]=(0.12 \pm 0.01) \mathrm{GeV}^{-2}$; $\alpha[\eta \gamma]=(1.4 \pm 0.1) \mathrm{GeV}^{-2}$
$\rightarrow \alpha$ reaction specific
$\rightarrow \alpha[\eta]=\alpha\left[\eta^{\prime}\right]$ understood 1-loop ChPT + large N_{c}

Going to $\eta \rightarrow \gamma \gamma^{*}$

Allows for parameter free prediction for isovector part of slope

We thus demonstrated:

- $\eta \rightarrow \gamma \gamma^{*}$ and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ closely connected
- FSI $\left(\Omega\left(Q^{2}\right)\right)$ universal; driven by ρ-pole and residues
- $P\left(Q^{2}\right)$ (reaction dependent!) also modifies $\eta \rightarrow \gamma^{*} \gamma$

Successful description of data with small uncertainties

The matrix element reads:

$$
T=\frac{G_{F}}{\sqrt{2}} V_{u b}^{*} \bar{\psi}_{\nu}\left(p_{\nu}\right) \gamma^{\mu}\left(1-\gamma_{5}\right) \psi_{l}\left(p_{l}\right) I_{\mu}
$$

with the hadronic current:

$$
\begin{aligned}
I_{\mu} & =\left\langle\pi^{+}\left(p_{+}\right) \pi^{-}\left(p_{-}\right)\right| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\left(p_{B}\right)\right\rangle \\
& =-\frac{i}{m_{B}}\left(P_{\mu} F+Q_{\mu} G+L_{\mu} R-\left(H / m_{B}^{3}\right) \epsilon_{\mu \nu \rho \sigma} L^{\nu} P^{\rho} Q^{\sigma}\right.
\end{aligned}
$$

with $P=p_{+}+p_{-}, Q=p_{+}-p_{-}, L=p_{l}+p_{\nu}$

goal:

Extraction of $V_{u b}$ with controlled uncertainty
\rightarrow Full command of the shape of the form factors
where $l_{\text {min }}=0$ for F, R and $l_{\text {min }}=1$ for G, H
\rightarrow A fixed normalization

Tools

We are going to use
\rightarrow Dispersion theory to fix shapes
$\longrightarrow s=P^{2}<1 \mathrm{GeV}^{2}$
\rightarrow Heavy Meson ChPT to fix norm
$\longrightarrow s_{l}=L^{2} \simeq M_{B}^{2}$

adapted from Faller et al., PRD89(2014)014015
Note: dispersive approach valid for full s_{l} range
But: we can not (yet?) control s_{l} dependence outside red area Yellow area needs different methods

Some details

at leading order: $B \rightarrow \pi \pi \ell \nu$ given by B^{*} pole terms determined by $g_{B^{*} B \pi}$ and f_{B}

```
Burdman \& Donoghue, PLB280(1992)287
```


\longrightarrow Left-hand cut/ square root singularity at $s=0$

Inclusion of left-hand cut

Kang et al., PRD89(2014)053015
$\operatorname{disc}\left(F\left(s, s_{l}\right)\right)=2 i\{\underbrace{F\left(s, s_{l}\right)}_{\text {right-hand cut }}+\underbrace{\hat{M}\left(s, s_{l}\right)}_{\text {left-hand cut }}\} \times \theta\left(s-4 m_{\pi}^{2}\right) \times \sin \delta(s) e^{-i \delta(s)}$
\rightarrow inhomogeneities $\hat{M}\left(s, s_{l}\right)$: angular averages of pole terms We get, e.g., for P-waves

$$
\begin{aligned}
F\left(s, s_{l}\right)= & \Omega_{1}^{1}(s)\left\{a_{0}\left(s_{l}\right)+a_{1}\left(s_{l}\right) s\right. \\
& +\frac{\cos \delta_{1}^{1}(s) \hat{M}\left(s, s_{l}\right)}{\left|\Omega_{1}^{1}(s)\right|} \\
& +\frac{s^{2}}{\pi} \mathrm{P} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{1}^{1}\left(s^{\prime}\right) \hat{M}\left(s^{\prime}, s_{l}\right)}{\left|\Omega_{1}^{1}\left(s^{\prime}\right)\right|\left(s^{\prime}-s\right)} \xlongequal{B^{+}}
\end{aligned}
$$

\rightarrow Pole terms introduce s_{l} dependence.

Results: form factors

\rightarrow line shapes get distorted
\rightarrow effect depends on s_{l} (here: $\left.s_{l}=\left(M_{B}-1 \mathrm{GeV}\right)^{2}\right)$

Results: $B_{l 4}$ rates

\rightarrow For $s_{l} \sim M_{B}^{2} S-$ and P-wave strengths fixed
\rightarrow For $s<1 \mathrm{GeV}^{2}$ shapes fixed
\rightarrow inclusion of experimental cuts straightforward

Summary

A combination of

- Heavy-Meson ChPT and
- dispersion theory
enabled us to treat $B \rightarrow \pi \pi l \bar{\nu}_{l}$
- model independently with
- controlled uncertainties.

Preconditions for extraction of $V_{u b}$

However, applicable in very limited kinematic regime only
How could this range be extended?
Are there possible synergies with lattice QCD?

Outlook - some ideas

Strategies I:

Test for overlap regions of the various effective theories and/or for proper interpolations
see Faller et al., PRD89(2014)014015
Use model to extend s-region:
\rightarrow inelastic resonances
C.H. PLB715(2012)170

Should allow one to include a lot more data in fits reduced uncertainty of $V_{u b}$ extraction

Outlook - some ideas

Strategies II:

Dispersion theory to overcome narrow width approximation
What is measured
in experiment

on the lattice

Dispersion theory provides a well defined connection!

$$
\text { cf. discussion on } \eta \rightarrow \pi \pi \gamma \longleftrightarrow \eta \rightarrow \gamma \gamma^{*}
$$

Outlook - some ideas

Strategies II:
Dispersion theory to overcome narrow width approximation
What is measured in experiment

on the lattice

Dispersion theory provides a well defined connection!

$$
\text { cf. discussion on } \eta \rightarrow \pi \pi \gamma \longleftrightarrow \eta \rightarrow \gamma \gamma^{*}
$$

THANKS A LOT FOR YOUR ATTENTION

