$B \rightarrow V$ form factors on the lattice

MATTHEW WINGATE UNIVERSITY OF CAMBRIDGE

LATTICE MEETS CONTINUUM SIEGEN, 29 SEPT - 2 OCT 2014

Outline

***** Motivation: measurements of $b \rightarrow s$ decays

$B \to K^* \ell^+ \ell^ B_s \to \phi \ell^+ \ell^-$

Form factors: first unquenched calculation

Observables

Future: Dealing with strong decay of the vector meson

Question: Effects of charmonium resonances at low recoil

Motivation

- ★ b → s decays occur only at 1-loop level in Standard Model: Room for new physics?
- Following initial results from CDF, LHC experiments (esp LHCb) are making impressive measurements of rare, semileptonic decays
- There are a few tantalizing discrepancies with SM predictions
- Taken seriously, these consistently *hint* at a nonstandard contribution to the Wilson coefficient C₉
- Significant effort from theory remains to quantify and reduce SM uncertainties

Low energy description of $b \rightarrow s$ decays

$$\mathcal{H}^{b
ightarrow s}_{ ext{eff}} \ = \ -rac{4G_F}{\sqrt{2}} V^*_{ts} V_{tb} \sum_i (C_i \mathcal{O}_i \ + \ C'_i \mathcal{O}'_i)$$

In the Standard Model, i = 1, ..., 10, S, P with known Wilson coefficients C_i . Beyond SM, chirality-flipped operators are allowed and the C_i ^(') depend on the model of new physics

Most important short-distance effects in $b \rightarrow sll$ come from 2-quark operators:

$$egin{aligned} \mathcal{O}_{9}^{(')} &= rac{e^2}{16\pi^2} \, ar{s} \gamma^\mu P_{L(R)} b \, ar{\ell} \gamma_\mu \ell & \mathcal{O}_{10}^{(')} &= rac{e^2}{16\pi^2} \, ar{s} \gamma^\mu P_{L(R)} b \, ar{\ell} \gamma_\mu \gamma_5 \ell \ & \mathcal{O}_{7}^{(')} &= rac{m_b e}{16\pi^2} \, ar{s} \sigma^{\mu
u} P_{R(L)} b \, F_{\mu
u} \end{aligned}$$

Charmonium resonance effects arise from:

$B \rightarrow V$ form factors

$$\langle V(k,\varepsilon)|\bar{q}\hat{\gamma}^{\mu}b|B(p)
angle \ = \ rac{2iV(q^2)}{m_B+m_V}\epsilon^{\mu
u
ho\sigma}\varepsilon^*_{
u}k_{
ho}p_{\sigma}$$

$$\begin{split} \langle V(k,\varepsilon) | \bar{q} \hat{\gamma}^{\mu} \hat{\gamma}^{5} b | B(p) \rangle &= 2m_{V} A_{0}(q^{2}) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} + (m_{B} + m_{V}) A_{1}(q^{2}) \left(\varepsilon^{*\mu} - \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} \right) \\ &- \left(A_{2}(q^{2}) \frac{\varepsilon^{*} \cdot q}{m_{B} + m_{V}} \left((p+k)^{\mu} - \frac{m_{B}^{2} - m_{V}^{2}}{q^{2}} q^{\mu} \right) \end{split}$$

$$q^{\nu}\langle V(k,\varepsilon)|\bar{q}\hat{\sigma}_{\mu\nu}b|B(p)\rangle = 2T_1(q^2)\epsilon_{\mu\rho\tau\sigma}\varepsilon^{*\rho}p^{\tau}k^{\sigma}$$

$$\begin{split} -q^{\nu} \langle V(k,\varepsilon) | \bar{q} \hat{\sigma}_{\mu\nu} \hat{\gamma}^5 b | B(p) \rangle \ &= i T_2(q^2) [\varepsilon^*_{\mu} (m_B^2 - m_V^2) - (\varepsilon^* \cdot q) (p+k)_{\mu}] \\ &+ i T_3(q^2) (\varepsilon^* \cdot q) \left[q_{\mu} - \frac{q^2}{m_B^2 - m_V^2} (p+k)_{\mu} \right] \end{split}$$

$$\begin{aligned} \mathbf{A}_{12}(q^2) &= \frac{(m_B + m_V)^2 (m_B^2 - m_V^2 - q^2) A_1(q^2) - \lambda A_2(q^2)}{16m_B m_V^2 (m_B + m_V)} \\ \mathbf{T}_{23}(q^2) &= \frac{m_B + m_V}{8m_B m_V^2} \left[\left(m_B^2 + 3m_V^2 - q^2\right) T_2(q^2) - \frac{\lambda T_3(q^2)}{m_B^2 - m_V^2} \right] \end{aligned}$$

with $\lambda = (t_+ - t)(t_- - t)$ $t = q^2$ $t_{\pm} = (m_B \pm m_V)^2$

Form factor shape

Simplified series expansion

$$F(t) = rac{1}{1-t/m_{
m res}^2}\sum_n a_n z^n$$

Bourrely, Caprini, Lellouch PRD 79 (2009)

 \boldsymbol{z}

Form factor shape & LQCD

$$F(t) = rac{1}{1-t/m_{ ext{res}}^2} \sum_n a_n z^n$$

As in Na, *et al.*, (HPQCD), PRD82 (2010)

strange

light

discretization effects	quark mass	quark mass
$F(t) = \frac{1}{P(t;\Delta m)} [1 + b_1 (aE_V)^2 + \ldots] \sum_{n=0}^{\infty} a_n z^n$	$[1+c_{n1}\Delta x+c_{n1}\Delta x+c$	$c_{n1s}\Delta x_s + \ldots]$

$$P(t;\Delta m) = 1 - \frac{t}{(m_B + \Delta m)^2} \qquad \Delta x = \frac{1}{(4\pi f)^2} \left(m_\pi^2 - m_{\pi,\text{phys}}^2\right) \qquad \Delta x_s = \frac{1}{(4\pi f)^2} \left(m_{\eta_s}^2 - m_{\eta_s,\text{phys}}^2\right)$$

n=0

Physical results: set *b*'s and c's = 0

In our LQCD calculation: only c_{01} , c_{01s} found to be statistically nonzero only a_0 and a_1 determined by data

Lattice action & parameters

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722]

MILC lattices (2+1 asqtad staggered) asqtad light & strange quarks NRQCD bottom quarks

label	#	N_x^3	$\times N_t$	$am_{\ell}^{\rm sea}/am_s^{\rm sea}$	r_1/a	$1/a ~({\rm GeV})$
c007	2109	20^{3}	$\times 64$	0.007/0.05	2.625(3)	1.660(12)
c02	2052	20^{3}	$\times 64$	0.02/0.05	2.644(3)	1.665(12)
f0062	1910	28^{3}	\times 96	0.0062/0.031	3.699(3)	2.330(17)

ensemble	$m_B (\text{GeV})$	m_{B_s} (GeV)	$m_{\pi} ({\rm MeV})$	$m_K \ ({ m MeV})$	m_{η_s} (MeV)	$m_{\rho} \; ({\rm MeV})$	m_{K^*} (MeV)	$m_{\phi} \ ({\rm MeV})$
c007	5.5439(32)	5.6233(7)	313.4(1)	563.1(1)	731.9(1)	892(28)	1045(6)	1142(3)
c02	5.5903(44)	5.6344(15)	519.2(1)	633.4(1)	730.6(1)	1050(7)	1106(4)	1162(3)
f0062	5.5785(22)	5.6629(13)	344.3(1)	589.3(2)	762.0(1)	971(7)	1035(4)	1134(2)
"physical"	5.279	5.366	140	495	686	775	892	1020

Lattice action & parameters

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722]

ensemble	$m_B \ ({\rm GeV})$	m_{B_s} (GeV)	$m_{\pi} ({ m MeV})$	$m_K \ ({ m MeV})$	m_{η_s} (MeV)	$m_{\rho} \; ({\rm MeV})$	m_{K^*} (MeV)	$m_{\phi} \ ({\rm MeV})$
c007	5.5439(32)	5.6233(7)	313.4(1)	563.1(1)	731.9(1)	892(28)	1045(6)	1142(3)
c02	5.5903(44)	5.6344(15)	519.2(1)	633.4(1)	730.6(1)	1050(7)	1106(4)	1162(3)
f0062	5.5785(22)	5.6629(13)	344.3(1)	589.3(2)	762.0(1)	971(7)	1035(4)	1134(2)
"physical"	5.279	5.366	140	495	686	775	892	1020

Operator matching

Currents using lattice fields (lattice regularization) Heavy quarks treated using lattice NRQCD (heavy quark expansion) Lattice calculation in low recoil regime ($|\mathbf{k}| \ll m_b$; $|\mathbf{k}| \ll 1/a$)

$$\Gamma^A \in [\gamma^\mu, \gamma^\mu \gamma^5, \sigma^{\mu
u}, \sigma^{\mu
u} \gamma^5]$$

Matching to continuum (V, A: conserved; T: MS-bar, $\mu = m_b$)

$${\cal J}^A \;=\; (1+lpha_s
ho^{(A)}) J^A_0 \;+\; J^A_1 \;-\; lpha_s \zeta^{(A)}_{10} J^A_0$$

Accurate to 1-loop in α_s and NLO in $1/m_b$

Operator matching

$$\mathcal{J}^A = (1 + lpha_s
ho^{(A)}) J_0^A + J_1^A - lpha_s \zeta_{10}^{(A)} J_0^A$$

Uncertainties:

• α_s^2

- 4% : largest 1-loop contribution suppressed by α_s *biggest systematic*
- $rac{lpha_s \Lambda_{
 m QCD}}{m_b}$
- 2% : largest Λ/m_b effect suppressed by α_s

Gulez, Shigemitsu, Wingate, PRD69 (2003), PRD73 (2006); Müller, Hart, Horgan, PRD83 (2011); Müller, priv. commun.

- $\left(\frac{\Lambda_{\rm QCD}}{m_{\rm b}}\right)^2$ 1% : largest Λ/m_b effect squared (& rounded up)

	Coarse	Fine
C_v	2.825	1.996
$ ho^{(0)}$	0.043	-0.058
$\zeta_{10}^{(0)}$	-0.166	-0.218
$ ho^{(ec{k})}$	0.270	0.332
$\zeta_{10}^{(k)}$	0.055	0.073
$ ho^{([0\ell])}$	0.076	0.320
$\zeta_{10}^{([0\ell])}$	-0.055	-0.073
$ ho^{([k\ell])}$	0.076	0.320
$\zeta_{10}^{([k\ell])}$	-0.055	-0.073

$B \rightarrow K^*$ form factors

$B_s \rightarrow \varphi$ form factors

Form factor error budget

Statistical + fitting uncertainties depend on z Smaller than systematic unc. in some cases Total unc. typically \approx 10-20% in data range

- B to V form factors not yet at the level of rigour as other LQCD calculations, e.g. B to pseudoscalar form factors
- Must properly deal with resonant nature of vector meson (c.f. Briceño, Hansen, Walker-Loud, arXiv:1406.5965)
- Nevertheless, results are at least as reliable as other theoretical methods
- ★ Resonance effects likely to be less for φ than for K^* yet similar conclusions regarding branching fraction (see below)

Many observables

Angular distribution for $\bar{B} \to \bar{K}^{*0} (\to K^- \pi^+) \mu^+ \mu^-$

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*} d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$

$$\begin{split} I(q^2, \theta_l, \theta_{K^*}, \phi) = &I_1^s \sin^2 \theta_{K^*} + I_1^c \cos^2 \theta_{K^*} + (I_2^s \sin^2 \theta_{K^*} + I_2^c \cos^2 \theta_{K^*}) \cos 2\theta_l \\ &+ I_3 \sin^2 \theta_{K^*} \sin^2 \theta_l \cos 2\phi + I_4 \sin 2\theta_{K^*} \sin 2\theta_l \cos \phi \\ &+ I_5 \sin 2\theta_{K^*} \sin \theta_l \cos \phi \\ &+ (I_6^s \sin^2 \theta_{K^*} + I_6^c \cos^2 \theta_{K^*}) \cos \theta_l + I_7 \sin 2\theta_{K^*} \sin \theta_l \sin \phi \\ &+ I_8 \sin 2\theta_{K^*} \sin 2\theta_l \sin \phi + I_9 \sin^2 \theta_{K^*} \sin^2 \theta_l \sin 2\phi \,. \end{split}$$

Similarly for $B \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ with $I_{1,2,3,4,7} \to \overline{I}_{1,2,3,4,7}$ and $I_{5,6,8,9} \to -\overline{I}_{5,6,8,9}$

$$S_{i} = \frac{I_{i} + \bar{I}_{i}}{d(\Gamma + \bar{\Gamma})/dq^{2}} \qquad A_{i} = \frac{I_{i} - \bar{I}_{i}}{d(\Gamma + \bar{\Gamma})/dq^{2}}$$
$$P_{4,5,6,8}^{\prime} = \frac{\langle S_{4,5,7,8} \rangle}{2\sqrt{-\langle S_{2}^{c} \rangle \langle S_{2}^{s} \rangle}} \qquad \langle \cdot \rangle \Rightarrow \text{ binned in } q^{2}$$

Ratios insensitive to f.f. at low q^2 . Descotes-Genon, Matias, Ramon, Virto [JHEP 01 (2013) 048]

Branching fracti

(10)

0.0

0.4

0.2

L

$B \rightarrow K^* \mu^+ \mu^-$ observables

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887

Fit to low recoil *B* to *V* data

Best fit: $C_9^{\rm NP} = -1.0 \pm 0.6$ $C_9' = 1.2 \pm 1.0$

Likelihood function

 C_9, C_9 assumed to be real

***** Data in 2 highest q^2 bins

- ★ $B \rightarrow K^* \mu \mu$ (neutral mode): dB/dq^2 , F_L , S_3 , S_4 , S_5 , A_{FB}
- ★ B_s → φµµ: dB/dq^2 , F_L , S_3
- Theory correlations between observables & bins taken into account

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887

2 complementary fits

Horgan, Liu, Meinel, Wingate, arXiv:1310.3887 Altmannshofer & Straub, arXiv:1308.1501 3

2

1

0

-1

-2

-3

Low q^2 discrepancy

Descotes-Genon, Matias, Virto [PRD88, 074002, (2013), arXiv:1307.5683]

FIG. 2: Comparison between the SM predictions (gray boxes), the experimental measurements (blue data points) and the predictions for the scenario with $C_9^{NP} = -1.5$ and other $C_i^{NP} = 0$ (red squares).

Agree with negative NP contribution to C_9 . They do not find $C_9' \neq 0$

Low q^2 discrepancy

Descotes-Genon, Matias, Virto [PRD88, 074002, (2013), arXiv:1307.5683]

Agree with negative NP contribution to C_9 . They do not find $C_9' \neq 0$

But another fit...

Consistent with SM (and also with negative NP contribution to C_9)

Orange: full fit. Blue: selection fit

Beaujean, Bobeth, van Dyk, [Eur. Phys. J. C 74 (2014), arXiv:1310.2478]

Vector meson decay

- ✤ Briceño, Hansen, Walker-Loud [arXiv:1406.5965] have extended the Lellouch-Lüscher method for *K* → *ππ* to *B* → *K** form factors, correctly including *πK* and *ηK* states on the lattice
- ✤ Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158] have begun the necessary step of numerically calculating states with quantum numbers of *K*^{*}, *πK*, and *ηK* on the lattice
- Phase shifts must be determined precisely: derivatives enter matrix element formalism
- Formalism worked out for unitary actions. No good for partial quenching or staggered.

Energy levels

Before looking $B \rightarrow K^* (\rightarrow K \pi)$ form factors, the πK and ηK systems must first be studied. This has been done by HSC on $n_f=2$, improved-Wilson fermion configurations.

Points: Lattice QCD data. Red curves: noninteracting πK levels (discrete momenta) Green: noninteracting ηK levels (discrete momenta)

Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158]

Phase shifts & inelasticities

Precise determination of phase shifts, and derivatives, are necessary ingredients to formalism for $B \rightarrow K^* (\rightarrow K \pi)$ form factors

Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158]

Matrix elements of nonlocal operators

$$\mathcal{M} = \frac{G_F \,\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* \Big[(\mathcal{A}_\mu + \mathcal{T}_\mu) \bar{u}_\ell \gamma^\mu v_\ell + \mathcal{B}_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell \Big]$$

 \mathbf{O}

$$\mathcal{A}_{\mu} = -\frac{2m_{b}}{q^{2}} q^{\nu} \langle \bar{K}^{*} | \bar{s} i \sigma_{\mu\nu} (C_{7}P_{R} + C_{7}'P_{L}) b | \bar{B} \rangle$$

$$+ \langle \bar{K}^{*} | \bar{s} \gamma_{\mu} (C_{9}P_{L} + C_{9}'P_{R}) b | \bar{B} \rangle$$

$$\mathcal{B}_{\mu} = \langle \bar{K}^{*} | \bar{s} \gamma_{\mu} (C_{10}P_{L} + C_{10}'P_{R}) b | \bar{B} \rangle$$

$$I_{C} : 2$$

$$\mathcal{T}_{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1...6;8} C_i \int d^4 x \ e^{iq \cdot x} \langle \bar{K}^* | \mathsf{T} O_i(0) \ j_{\mu}(x) | \bar{B} \rangle$$

Affects all $b \rightarrow sll$ decays, regardless of initial/final hadrons

OPE at large q^2

$$\mathcal{T}_{\mu} = -T_7(q^2) \frac{2m_b}{q^2} q^{\nu} \langle \bar{K}^* | \bar{s} \, i\sigma_{\mu\nu} P_R b | \bar{B} \rangle + T_9(q^2) \langle \bar{K}^* | \bar{s} \gamma_{\mu} P_L b | \bar{B} \rangle$$
$$+ O\left(\frac{\alpha_s \Lambda}{m_b}, \frac{\Lambda^2}{m_b^2}, \frac{m_c^4}{q^4}\right) \qquad \text{Grinstein \& Pirjol, PRD 70, 114005 (2004)}$$

- ✤ First correction in expansion (m_c^2/q^2) simply augments C_7^{eff} and C_9^{eff} : Buras, Misiak, Münz, Pokorski (BMMP) → Grinstein, Pirjol (GP)
- Order $\alpha_s \Lambda/m_b$ corrections calculable on lattice
- Local duality: bin observables in q^2
- Duality violations estimated to be small (~2% in model): Beylich, Buchalla, Feldmann, [Eur. Phys. J C71, 1635 (2011), arXiv:1101.5118]
- On the other hand, Lyon & Zwicky [arXiv:1406.0566] claim charmonium resonances can have a much larger effect, even on binned observables: "complete breakdown of factorization"

EGOO

 $\rightarrow \bar{s}\Gamma iDh_{n}$

Charmonium effects from OPE: K*

✤ BMMP → GP correction shifts BF bin ~10%. Remaining corrections should be smaller (~1-5%, direction unknown)

Duality violations estimated to be small (~2% in model), Beylich, Buchalla, Feldmann)

• (Calculation of non-local m.e. on lattice *very* challenging. Generalize Δm_K ??)

Charmonium effects from OPE: K

Form factors from Bouchard et al. (HPQCD) [PRD 88, arXiv:1306.2384]

✤ BMMP → GP correction shifts BF bin ~10%. Remaining corrections should be smaller (~1-5%, direction unknown)

Duality violations estimated to be small (~2% in model), Beylich, Buchalla, Feldmann)

• (Calculation of non-local m.e. on lattice *very* challenging. Generalize Δm_K ??)

Narrower bins

Form factors from Bouchard et al. (HPQCD) [PRD 88, arXiv:1306.2384]

Conclusions

- ♣ Unquenched Lattice QCD calculations of $B \rightarrow K^*$ and $B_s \rightarrow \phi$ form factors (also $B_s \rightarrow K^*$)
- Striceño, Hansen, Walker-Loud formalism for correctly treating *K** and φ will take time to implement, but in principle this can be brought under control: all form factor uncertainties quantifiable
- ★ Experimental measurements for $B \rightarrow K^* \mu^+ \mu^-$, $B_s \rightarrow \varphi \mu^+ \mu^-$, and $B \rightarrow K \mu^+ \mu^-$ branching fractions are low compared to present SM predictions (look forward to greater precision in $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$)
- Is the large-q² OPE sufficient to account for matrix elements of nonlocal operators, at least in wide bins?
- ♣ [$B \rightarrow \rho$ still noisy even with 32K measurements.]

Strange quark mass interpolation

$$F(t;\Delta y,\Delta w) \;=\; rac{1}{P(t)} \left[a_0 \left(1 + f_{01} \Delta y + g_{01} \Delta w
ight) + a_1 z
ight]$$

Use results of 3-f.f. fits to include c_{01s} in final fits: $B_s \rightarrow \phi$ $c_{01s} = f_{01} + g_{01}$ $B_s \rightarrow K$ $c_{01s} = f_{01}$ $B_s \rightarrow K^*$ $c_{01s} = g_{01}$

Heavy quark mass tuning

Heavy meson masses are 5% too large

Isgur-Wise relations (PRD42, 2388(1990)):

$$egin{aligned} V, A_0, T_1, T_{23} \propto \sqrt{m_B} \ A_1, A_{12}, T_2 \propto rac{1}{\sqrt{m_B}} \end{aligned}$$

➡ Adjust central values by 2.5% in appropriate direction

→ Remaining Λ/m_b error is less than 1%

Operator matching

1) Ratio statistically precise due to correlations 2) $1/m_b$ effect comparable size to statistical error in absolute value of f.f.