$B \rightarrow V$ form factors on the lattice

MATTHEW WINGATE
UNIVERSITY OF CAMBRIDGE

LATTICE MEETS CONTINUUM SIEGEN, 29 SEPT - 2 OCT 2014

Outline

\because Motivation: measurements of $b \rightarrow s$ decays

$$
B \rightarrow K^{*} \ell^{+} \ell^{-} \quad B_{s} \rightarrow \phi \ell^{+} \ell^{-}
$$

$\%$ Form factors: first unquenched calculation
\& Observables
\% Future: Dealing with strong decay of the vector meson
\& Question: Effects of charmonium resonances at low recoil

Motivation

$\& b \rightarrow s$ decays occur only at 1-loop level in Standard Model: Room for new physics?
\& Following initial results from CDF, LHC experiments (esp LHCb) are making impressive measurements of rare, semileptonic decays
\% There are a few tantalizing discrepancies with SM predictions
\& Taken seriously, these consistently hint at a nonstandard contribution to the Wilson coefficient C_{9}
\& Significant effort from theory remains to quantify and reduce SM uncertainties

Low energy description of $b \rightarrow s$ decays

$$
\mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i}\left(C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}\right)
$$

In the Standard Model, $i=1, \ldots, 10, S, P$ with known Wilson coefficients C_{i}. Beyond SM, chirality-flipped operators are allowed and the $\left.C_{i}{ }^{(}\right)$depend on the model of new physics

Most important short-distance effects in $b \rightarrow$ sll come from 2-quark operators:

$$
\begin{gathered}
\mathcal{O}_{9}^{\left({ }^{\prime}\right)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L(R)} b \bar{\ell} \gamma_{\mu} \ell \quad \mathcal{O}_{10}^{\left({ }^{\prime}\right)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L(R)} b \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
\mathcal{O}_{7}^{\left({ }^{\prime}\right)}=\frac{m_{b} e}{16 \pi^{2}} \bar{s} \sigma^{\mu \nu} P_{R(L)} b F_{\mu \nu}
\end{gathered}
$$

Charmonium resonance effects arise from:

$$
\mathcal{O}_{1}=\bar{c}^{\alpha} \gamma^{\mu} \boldsymbol{P}_{L} b^{\beta} \bar{s}^{\beta} \gamma^{\mu} \boldsymbol{P}_{L} c^{\alpha} \quad \mathcal{O}_{2}=\bar{c}^{\alpha} \gamma^{\mu} \boldsymbol{P}_{L} b^{\alpha} \bar{s}^{\beta} \gamma^{\mu} P_{L} c^{\beta}
$$

$B \rightarrow V$ form factors

$$
\begin{aligned}
& \langle V(k, \varepsilon)| \bar{q}^{\mu} b|B(p)\rangle=\frac{2 i V\left(q^{2}\right)}{m_{B}+m_{V}} \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*} k_{\rho} p_{\sigma} \\
& \langle V(k, \varepsilon)| \bar{q} \hat{\gamma}^{\mu} \hat{\gamma}^{5} b|B(p)\rangle=2 m_{V} A_{0}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}+\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)\left(\varepsilon^{* \mu}-\frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}\right) \\
& A_{2}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} q^{\mu}\right) \\
& q^{\nu}\langle V(k, \varepsilon)| \bar{q} \hat{\sigma}_{\mu \nu} b|B(p)\rangle=2 T_{1}\left(q^{2}\right) \epsilon_{\mu \rho \tau \sigma} \varepsilon^{* \rho} p^{\tau} k^{\sigma} \\
& \left.-q^{\nu}\langle V(k, \varepsilon)| \bar{q} \hat{\sigma}_{\mu \nu} \hat{\gamma}^{5} b|B(p)\rangle=i T_{2}\left(q^{2}\right) \varepsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right)-\left(\varepsilon^{*} \cdot q\right)(p+k)_{\mu}\right] \\
& +\operatorname{rin}_{3}\left(\boldsymbol{q}^{2}\right)^{2}\left(\varepsilon^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}(p+k)_{\mu}\right] \\
& A_{12}\left(q^{2}\right)=\frac{\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-m_{V}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)}{16 m_{B} m_{V}^{2}\left(m_{B}+m_{V}\right)} \\
& T_{23}\left(q^{2}\right)=\frac{m_{B}+m_{V}}{8 m_{B} m_{V}^{2}}\left[\left(m_{B}^{2}+3 m_{V}^{2}-q^{2}\right) T_{2}\left(q^{2}\right)-\frac{\lambda T_{3}\left(q^{2}\right)}{m_{B}^{2}-m_{V}^{2}}\right] \\
& \text { with } \lambda=\left(t_{+}-t\right)\left(t_{-}-t\right) \quad t=q^{2} \quad t_{ \pm}=\left(m_{B} \pm m_{V}\right)^{2}
\end{aligned}
$$

Form factor shape

Series (z) expansion

$$
t=q^{2} \quad t_{ \pm}=\left(m_{B} \pm m_{F}\right)^{2}
$$

Choose, e.g. $t_{0}=12 \mathrm{GeV}^{2}$

$$
z=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}
$$

Simplified series expansion

$$
F(t)=\frac{1}{1-t / m_{\mathrm{res}}^{2}} \sum_{n} a_{n} z^{n}
$$

Form factor shape \& LQCD

$$
F(t)=\frac{1}{1-t / m_{\mathrm{res}}^{2}} \sum_{n} a_{n} z^{n}
$$

As in Na, et al., (HPQCD), PRD82 (2010)

discretization effects

$\begin{array}{cc}\text { light } & \text { strange } \\ \text { quark } & \text { quark }\end{array}$ mass mass

$$
F(t)=\frac{1}{P(t ; \Delta m)}\left[1+b_{1}\left(a E_{V}\right)^{2}+\ldots\right] \sum_{n=0} a_{n} z^{n}\left[1+c_{n 1} \Delta x+c_{n 1 s} \Delta x_{s}+\ldots\right]
$$

$$
P(t ; \Delta m)=1-\frac{t}{\left(m_{B}+\Delta m\right)^{2}} \quad \Delta x=\frac{1}{(4 \pi f)^{2}}\left(m_{\pi}^{2}-m_{\pi, \text { phys }}^{2}\right) \quad \Delta x_{s}=\frac{1}{(4 \pi f)^{2}}\left(m_{\eta_{s}}^{2}-m_{\eta_{s}, \text { phys }}^{2}\right)
$$

Physical results: set b 's and c 's $=0$
In our LQCD calculation: only c_{01}, c_{018} found to be statistically nonzero only a_{0} and a_{1} determined by data

Lattice action \& parameters

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722]

MILC lattices (2+1 asqtad staggered)
 asqtad light \& strange quarks
 NRQCD bottom quarks

label	$\#$	$N_{x}^{3} \times N_{t}$	$a m_{\ell}^{\text {sea }} / a m_{s}^{\text {sea }}$	r_{1} / a	$1 / a(\mathrm{GeV})$
c007	2109	$20^{3} \times 64$	$0.007 / 0.05$	$2.625(3)$	$1.660(12)$
c02	2052	$20^{3} \times 64$	$0.02 / 0.05$	$2.644(3)$	$1.665(12)$
f0062	1910	$28^{3} \times 96$	$0.0062 / 0.031$	$3.699(3)$	$2.330(17)$

ensemble	$m_{B}(\mathrm{GeV})$	$m_{B_{s}}(\mathrm{GeV})$		$m_{\pi}(\mathrm{MeV})$		$m_{K}(\mathrm{MeV})$	$m_{\eta_{s}}(\mathrm{MeV})$	$m_{\rho}(\mathrm{MeV})$
c007	$5.5439(32)$	$5.6233(7)$		$m_{K^{*}}(\mathrm{MeV})$	$m_{\phi}(\mathrm{MeV})$			
c02	$5.5903(44)$	$5.6344(15)$	$519.2(1)$	$563.1(1)$	$731.9(1)$	$892(28)$	$1045(6)$	$1142(3)$
f0062	$5.5785(22)$	$5.6629(13)$	$344.3(1)$	$589.3(2)$	$762.0(1)$	$971(7)$	$1035(4)$	$1134(2)$
"physical"	5.279	5.366	140	495	686	775	892	1020

Lattice action \& parameters

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722]

MILC lattices (2+1 asqtad staggered)
 asqtad light \& strange quarks
 NRQCD bottom quarks

$\operatorname{src}=8 x$ meas $=16 x$

ensemble	$m_{B}(\mathrm{GeV})$	$m_{B_{s}}(\mathrm{GeV})$		$m_{\pi}(\mathrm{MeV})$		$m_{K}(\mathrm{MeV})$	$m_{\eta_{s}}(\mathrm{MeV})$	$m_{\rho}(\mathrm{MeV})$
c007	$5.5439(32)$	$5.6233(7)$		$m_{K^{*}}(\mathrm{MeV})$	$m_{\phi}(\mathrm{MeV})$			
c02	$5.5903(44)$	$5.6344(15)$	$519.2(1)$	$563.1(1)$	$731.9(1)$	$892(28)$	$1045(6)$	$1142(3)$
f0062	$5.5785(22)$	$5.6629(13)$	$344.3(1)$	$589.3(2)$	$762.0(1)$	$971(7)$	$1035(4)$	$1134(2)$
"physical"	5.279	5.366	140	495	686	775	892	1020

Operator matching

Currents using lattice fields (lattice regularization)
Heavy quarks treated using lattice NRQCD (heavy quark expansion)
Lattice calculation in low recoil regime ($|\mathbf{k}| \ll m_{b} ;|\mathbf{k}| \ll 1 / a$)

$$
\begin{array}{rlr}
J_{0}^{A}= & \bar{\psi}_{\boldsymbol{q}} \Gamma^{A} \boldsymbol{\Psi}_{b} & \text { LO in } 1 / m_{b} \\
J_{1}^{A}= & -\frac{\mathbf{1}}{2 m_{b}} \bar{\psi}_{\boldsymbol{q}} \Gamma^{A} \gamma \cdot \nabla \Psi_{b} & \text { NLO in } 1 / m_{b} \\
& \Gamma^{A} \in\left[\gamma^{\mu}, \gamma^{\mu} \gamma^{5}, \sigma^{\mu \nu}, \sigma^{\mu \nu} \gamma^{5}\right]
\end{array}
$$

Matching to continuum (V, A : conserved; T : MS-bar, $\mu=m_{b}$)

$$
\mathcal{J}^{A}=\left(1+\alpha_{s} \rho^{(A)}\right) J_{0}^{A}+J_{1}^{A}-\alpha_{s} \zeta_{10}^{(A)} J_{0}^{A}
$$

Accurate to 1-loop in α_{s} and NLO in $1 / m_{b}$

Operator matching

$$
\mathcal{J}^{A}=\left(1+\alpha_{s} \rho^{(A)}\right) J_{0}^{A}+J_{1}^{A}-\alpha_{s} \zeta_{10}^{(A)} J_{0}^{A}
$$

Uncertainties:

- α_{s}^{2}

4\% : largest 1-loop contribution suppressed by α_{s} biggest systematic

- $\frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{m_{b}}$
2% : largest Λ / m_{b} effect suppressed by α_{s}

	Coarse	Fine
C_{v}	2.825	1.996
$\rho^{(0)}$	0.043	-0.058
$\zeta_{10}^{(0)}$	-0.166	-0.218
$\rho^{(k)}$	0.270	0.332
$\zeta_{10}^{(k)}$	0.055	0.073
$\rho^{([0 \ell])}$	0.076	0.320
$\zeta_{10}^{([0 \ell])}$	-0.055	-0.073
$\rho^{([k \ell])}$	0.076	0.320
$\zeta_{10}^{([k e])}$	-0.055	-0.073

Gulez, Shigemitsu, Wingate, PRD69 (2003), PRD73 (2006); Müller, Hart, Horgan, PRD83 (2011); Müller, priv. commun.

- $\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2} \quad 1 \%: \begin{aligned} & \text { largest } \Lambda / m_{b} \text { effect } \\ & \text { squared (\& rounded up) }\end{aligned}$

$B \rightarrow K^{*}$ form factors

low recoil
high q^{2}
large recoil
low q^{2}

low recoil
high q^{2}
large recoil
low q^{2}

$B_{s} \rightarrow \varphi$ form factors

low recoil
high q^{2}
large recoil
low q^{2}

low recoil
high q^{2}
large recoil low q^{2}

Form factor error budget

source	size
Truncation of $O\left(\alpha_{s}^{2}\right)$ terms	4%
Truncation of $O\left(\alpha_{s} \Lambda_{\mathrm{QCD}} / m_{b}\right)$ terms	2%
Truncation of $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right)$ terms	1%
Mistuning of m_{b}	$<1 \%$
Net systematic uncertainty	5%

Statistical + fitting uncertainties depend on z Smaller than systematic unc. in some cases
Total unc. typically $\approx 10-20 \%$ in data range
\& B to V form factors not yet at the level of rigour as other LQCD calculations, e.g. B to pseudoscalar form factors
$\%$ Must properly deal with resonant nature of vector meson (c.f. Briceño, Hansen, Walker-Loud, arXiv:1406.5965)
\% Nevertheless, results are at least as reliable as other theoretical methods
$\&$ Resonance effects likely to be less for φ than for K^{*} - yet similar conclusions regarding branching fraction (see below)

Many observables

Angular distribution for $\bar{B} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \mu^{+} \mu^{-}$

$$
\begin{aligned}
& \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi}=\frac{9}{32 \pi} I\left(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi\right) \\
I\left(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi\right)= & I_{1}^{s} \sin ^{2} \theta_{K^{*}}+I_{1}^{c} \cos ^{2} \theta_{K^{*}}+\left(I_{2}^{s} \sin ^{2} \theta_{K^{*}}+I_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{l} \\
& +I_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \cos 2 \phi+I_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \cos \phi \\
& +I_{5} \sin 2 \theta_{K^{*}} \sin \theta_{l} \cos \phi \\
& +\left(I_{6}^{s} \sin ^{2} \theta_{K^{*}}+I_{6}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos \theta_{l}+I_{7} \sin 2 \theta_{K^{*}} \sin \theta_{l} \sin \phi \\
& +I_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \sin \phi+I_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \sin 2 \phi .
\end{aligned}
$$

Similarly for $B \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$with $I_{1,2,3,4,7} \rightarrow \bar{I}_{1,2,3,4,7}$ and $I_{5,6,8,9} \rightarrow-\bar{I}_{5,6,8,9}$

$$
\begin{array}{cc}
S_{i}=\frac{I_{i}+\bar{I}_{i}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} & A_{i}=\frac{I_{i}-\bar{I}_{i}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \\
P_{4,5,6,8}^{\prime}=\frac{\left\langle S_{4,5,7,8}\right\rangle}{2 \sqrt{-\left\langle S_{2}^{c}\right\rangle\left\langle S_{2}^{s}\right\rangle}} & \langle\cdot\rangle \Rightarrow \text { binned in } q^{2}
\end{array}
$$

Ratios insensitive to f.f. at low q^{2}. Descotes-Genon, Matias, Ramon, Virto [JHEP 01 (2013) 048]

Branching fractions

\square SM (binned)

Expt: LHCb, CMS \& CDF (K^{*}) LHCb, CDF (φ)

Expt: LHCb, JHEP, arXiv:1403.8044

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887; S Meinel, Paris Workshop 2014

$B \rightarrow K^{*} \mu^{+} \mu^{-}$observables

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887

$B_{s} \rightarrow \varphi \mu^{+} \mu^{-}$observables

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887

Fit to low recoil B to V data

Best fit: $\quad C_{9}^{\mathrm{NP}}=-1.0 \pm 0.6 \quad C_{9}^{\prime}=1.2 \pm 1.0$

Likelihood function

* C_{9}, C_{9} ' assumed to be real
\& Data in 2 highest q^{2} bins
- $B \rightarrow K^{*} \mu \mu$ (neutral mode): $d B / d q^{2}, F_{L}, S_{3}, S_{4}, S_{5}, A_{F B}$
- $B_{\mathrm{s}} \rightarrow \varphi \mu \mu: d B / d q^{2}, F_{L}, S_{3}$
\% Theory correlations between observables \& bins taken into account

2 complementary fits

Horgan, Liu, Meinel, Wingate, arXiv:1310.3887

Altmannshofer \& Straub, arXiv:1308.1501

Low q^{2} discrepancy

Descotes-Genon, Matias, Virto [PRD88, 074002, (2013), arXiv:1307.5683]

FIG. 2: Comparison between the SM predictions (gray boxes), the experimental measurements (blue data points) and the predictions for the scenario with $\mathcal{C}_{9}^{\mathrm{NP}}=-1.5$ and other $\mathcal{C}_{i}^{\mathrm{NP}}=0$ (red squares).

Agree with negative NP contribution to C_{9}. They do not find $C_{9}{ }^{\prime} \neq \mathrm{o}$

Low q^{2} discrepancy

Descotes-Genon, Matias, Virto [PRD88, 074002, (2013), arXiv:1307.5683]

Agree with negative NP contribution to C_{9}. They do not find $C_{9}{ }^{\prime} \neq 0$

But another fit...

Consistent with SM (and also with negative NP contribution to C_{9})

Orange: full fit. Blue: selection fit

Vector meson decay

\% Briceño, Hansen, Walker-Loud [arXiv:1406.5965] have extended the Lellouch-Lüscher method for $K \rightarrow \pi \pi$ to $B \rightarrow K^{*}$ form factors, correctly including πK and ηK states on the lattice
\& Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158] have begun the necessary step of numerically calculating states with quantum numbers of $K^{*}, \pi K$, and ηK on the lattice

* Phase shifts must be determined precisely: derivatives enter matrix element formalism
$\%$ Formalism worked out for unitary actions. No good for partial quenching or staggered.

Energy levels

Before looking $B \rightarrow K^{*}(\rightarrow K \pi)$ form factors, the πK and ηK systems must first be studied. This has been done by HSC on $n_{f}=2$, improved-Wilson fermion configurations.

$J^{P}=\mathrm{O}+$ contribute

$J^{P}=0+, 1-, 2+$ contribute

Points: Lattice QCD data.
Red curves: noninteracting πK levels (discrete momenta) Green: noninteracting ηK levels (discrete momenta)

Phase shifts \& inelasticities

$$
J^{P}=0+
$$

$$
J^{P}=1-
$$

$$
J^{P}=2+
$$

Precise determination of phase shifts, and derivatives, are necessary ingredients to formalism for $B \rightarrow K^{*}(\rightarrow K \pi)$ form factors

Matrix elements of nonlocal operators

$$
\mathcal{M}=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(\mathcal{A}_{\mu}+\mathcal{T}_{\mu}\right) \bar{u}_{\ell} \gamma^{\mu} v_{\ell}+\mathcal{B}_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_{5} v_{\ell}\right]
$$

$$
\begin{aligned}
\mathcal{A}_{\mu}= & -\frac{2 m_{b}}{q^{2}} q^{\nu}\left\langle\bar{K}^{*}\right| \bar{s} i \sigma_{\mu \nu}\left(C_{7} P_{R}+C_{7}^{\prime} P_{L}\right) b|\bar{B}\rangle \\
& +\left\langle\bar{K}^{*}\right| \bar{s} \gamma_{\mu}\left(C_{9} P_{L}+C_{9}^{\prime} P_{R}\right) b|\bar{B}\rangle \\
\mathcal{B}_{\mu}= & \left\langle\bar{K}^{*}\right| \bar{s} \gamma_{\mu}\left(C_{10} P_{L}+C_{10}^{\prime} P_{R}\right) b|\bar{B}\rangle \\
& \mathcal{T}_{\mu}=\frac{-16 i \pi^{2}}{q^{2}} \sum_{i=1 \ldots . .6 ; 8} C_{i} \int \mathrm{~d}^{4} x e^{i q \cdot x}\left\langle\bar{K}^{*}\right| \mathrm{T} O_{i}(0) j_{\mu}(x)|\bar{B}\rangle
\end{aligned}
$$

Affects all $b \rightarrow$ sll decays, regardless of initial/final hadrons

OPE at large q^{2}

$$
\begin{aligned}
\mathcal{T}_{\mu}=-T_{7}\left(q^{2}\right) & \frac{2 m_{b}}{q^{2}} q^{\nu}\left\langle\bar{K}^{*}\right| \bar{s} i \sigma_{\mu \nu} P_{R} b|\bar{B}\rangle+T_{9}\left(q^{2}\right)\left\langle\bar{K}^{*}\right| \bar{s} \gamma_{\mu} P_{L} b|\bar{B}\rangle \\
& +O\left(\frac{\alpha_{s} \Lambda}{m_{b}}, \frac{\Lambda^{2}}{m_{b}^{2}}, \frac{m_{c}^{4}}{q^{4}}\right) \quad \text { Grinstein \& Pirjol, PRD 70, 114005 (2004) }
\end{aligned}
$$

\& First correction in expansion $\left(m_{c}{ }^{2} / q^{2}\right)$ simply augments C_{7} eff and C_{9} eff : Buras, Misiak, Münz, Pokorski (BMMP) \rightarrow Grinstein, Pirjol (GP)
\& Order $\alpha_{s} \Lambda / m_{b}$ corrections calculable on lattice
\& Local duality: bin observables in q^{2}

\& Duality violations estimated to be small ($\sim 2 \%$ in model): Beylich, Buchalla, Feldmann, [Eur. Phys. J C71, 1635 (2011), arXiv:1101.5118]
\& On the other hand, Lyon \& Zwicky [arXiv:1406.0566] claim charmonium resonances can have a much larger effect, even on binned observables: "complete breakdown of factorization"

Charmonium effects from OPE: K^{*}

$\%$ BMMP \rightarrow GP correction shifts BF bin $\sim 10 \%$. Remaining corrections should be smaller ($\sim 1-5 \%$, direction unknown)
\% Duality violations estimated to be small ($\sim 2 \%$ in model), Beylich, Buchalla, Feldmann)
$\% ~\left(C a l c u l a t i o n ~ o f ~ n o n-l o c a l ~ m . e . ~ o n ~ l a t t i c e ~ v e r y ~ c h a l l e n g i n g . ~ G e n e r a l i z e ~ \Delta m_{K} ? ?\right.$)

Charmonium effects from OPE: K

Form factors from Bouchard et al. (HPQCD) [PRD 88, arXiv:1306.2384]

\& BMMP \rightarrow GP correction shifts BF bin $\sim 10 \%$. Remaining corrections should be smaller ($\sim 1-5 \%$, direction unknown)
\% Duality violations estimated to be small ($\sim 2 \%$ in model), Beylich, Buchalla, Feldmann)
\% (Calculation of non-local m.e. on lattice very challenging. Generalize Δm_{K} ??)

Narrower bins

Form factors from Bouchard et al. (HPQCD) [PRD 88, arXiv:1306.2384]

Conclusions

\approx Unquenched Lattice QCD calculations of $B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ form factors (also $B_{s} \rightarrow K^{*}$)
\& Briceño, Hansen, Walker-Loud formalism for correctly treating K^{*} and φ will take time to implement, but in principle this can be brought under control: all form factor uncertainties quantifiable

* Experimental measurements for $B \rightarrow K^{*} \mu^{+} \mu^{-}, B_{s} \rightarrow \varphi \mu^{+} \mu^{-}$, and $B \rightarrow K \mu^{+} \mu^{-}$branching fractions are low compared to present SM predictions (look forward to greater precision in $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$)
* Is the large- q^{2} OPE sufficient to account for matrix elements of nonlocal operators, at least in wide bins?
$\&[B \rightarrow \rho$ still noisy even with 32 K measurements.]

extra

Strange quark mass interpolation

$$
F(t ; \Delta y, \Delta w)=\frac{1}{P(t)}\left[a_{0}\left(1+f_{01} \Delta y+g_{01} \Delta w\right)+a_{1} z\right]
$$

Use results of 3-f.f. fits to include c_{015} in final fits:

$$
\begin{array}{ll}
B_{s} \rightarrow \phi & c_{01 s}=f_{01}+g_{01} \\
B \rightarrow K & c_{01 s}=f_{01} \\
B_{s} \rightarrow K^{*} & c_{01 s}=g_{01}
\end{array}
$$

Heavy quark mass tuning

$\%$ Heavy meson masses are 5% too large
\% Isgur-Wise relations (PRD42, 2388(1990)):

$$
\begin{aligned}
V, A_{0}, T_{1}, T_{23} \propto \sqrt{m_{B}} \\
A_{1}, A_{12}, T_{2} \propto \frac{1}{\sqrt{m_{B}}}
\end{aligned}
$$

- Adjust central values by 2.5% in appropriate direction
\Rightarrow Remaining Λ / m_{b} error is less than 1%

Operator matching

[$F\left(q^{2}\right)$ including $1 / m_{b}$ currents $] /\left[F\left(q^{2}\right)\right.$ excluding $1 / m_{b}$ currents]

1) Ratio statistically precise due to correlations
2) $1 / m_{b}$ effect comparable size to statistical error in absolute value of f.f.
