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Outline

✤ Motivation: measurements of b ➙ s decays 

!

✤ Form factors: first unquenched calculation 

✤ Observables 

✤ Future: Dealing with strong decay of the vector meson 

✤ Question: Effects of charmonium resonances at low recoil

B ! K⇤`+`� Bs ! �`+`�



Motivation

✤ b ➙ s decays occur only at 1-loop level in Standard Model:     
Room for new physics? 

✤ Following initial results from CDF, LHC experiments (esp LHCb) 
are making impressive measurements of rare, semileptonic 
decays 

✤ There are a few tantalizing discrepancies with SM predictions 

✤ Taken seriously, these consistently hint at a nonstandard 
contribution to the Wilson coefficient C9 

✤ Significant effort from theory remains to quantify and reduce SM 
uncertainties



Low energy description of b ➙ s decays

Most important short-distance effects in b ➙ sll come from 2-quark operators:
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b In the Standard Model, i = 1, …, 10, S, P with known Wilson 
coefficients Ci.  Beyond SM, chirality-flipped operators are 
allowed and the Ci (’) depend on the model of new physics



B ➙V form factors
hV (k, ")|q̄�̂µb|B(p)i =

2iV (q2)

mB + mV
✏µ⌫⇢�"⇤⌫k⇢p�

hV (k, ")|q̄�̂µ�̂5b|B(p)i = 2mV A0(q
2)

"⇤ · q
q2

qµ + (mB +mV )A1(q
2)

✓
"⇤µ �

"⇤ · q
q2

qµ

◆

�A2(q
2)

"⇤ · q
mB + mV

✓
(p+ k)µ �

m2
B � m2

V

q2
qµ

◆

q⌫hV (k, ")|q̄�̂µ⌫b|B(p)i = 2T1(q
2)✏µ⇢⌧�"

⇤⇢p⌧k�

q⌫hV (k, ")|q̄�̂µ⌫ �̂
5b|B(p)i = iT2(q

2)["⇤µ(m
2
B �m2

V )� ("⇤ · q)(p+ k)µ]

+ iT3(q
2)("⇤ · q)


qµ �

q2

m2
B � m2

V

(p+ k)µ

�
−

A12(q
2) =

(mB + mV )2(m2
B � m2

V � q2)A1(q2) � �A2(q2)

16mBm2
V (mB + mV )

T23(q
2) =

mB + mV

8mBm2
V

�
m2

B + 3m2
V � q2

�
T2(q

2)�
�T3(q2)

m2
B � m2

V

�

� = (t+ � t)(t� � t) t = q2 t± = (mB ±mV )2with



Form factor shape

Series (z) expansion
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Form factor shape & LQCD
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Physical results: set b’s and c’s = 0

discretization effects

light 
quark 
mass

strange 
quark 
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In our LQCD calculation:  
 only c01, c01s found to be statistically nonzero             
 only a0 and a1 determined by data            



Lattice action & parameters
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TABLE I: Parameters of the MILC 2+1 asqtad gauge field
configurations used in this work. r1/a values come from [24].
We take r1 = 0.3133(23) fm from [25].

label # N3
x × Nt amsea

ℓ /amsea
s r1/a 1/a (GeV)

c007 2109 203
× 64 0.007/0.05 2.625(3) 1.660(12)

c02 2052 203
× 64 0.02/0.05 2.644(3) 1.665(12)

f0062 1910 283
× 96 0.0062/0.031 3.699(3) 2.330(17)

III. MONTE CARLO DETAILS

A. Gauge field configurations

We used a subset of the MILC collaboration configu-
rations [24, 26]. The action used by MILC is the 1-loop
improved Symanzik-improved gauge action [27, 28] and
include the effects of 2 + 1 flavors of dynamical fermions
using the O(a2) tadpole-improved (AsqTad) staggered
quark action [29–33] making use of the fourth-root pro-
cedure to account for the multiple tastes present in stag-
gered fermion formulations (e.g. see [34, 35]).

We chose these the subset listed in Table I in order to
vary both the up/down sea quark mass msea

ℓ and the lat-
tice spacing a: we chose 2 “coarse” lattices (c007 and
c02) on which to test quark mass dependence, and 1
“fine” lattice (f0062) with approximately the same Gold-
stone pion mass as on c007. (Results for meson masses
will be discussed below and in Table III.) The mass de-
noted by msea

s is only approximately tuned to the phys-
ical strange quark mass. (Precise tuning must be done
self-consistently and requires a great deal of computa-
tional effort, especially for the first set of ensembles with
a particular action.)

A calculation of B → πℓν form factors on a similar

TABLE II: Valence quark parameters.

config # amval
ℓ /amval

s uP amb n uL

c007 16872 0.007/0.04 2.8 2

c02 16416 0.02/0.04 2.8 2

f0062 15280 0.0062/0.031 1.95 2

subset of MILC lattices [36] found very mild quark mass
dependence and no statistically significant dependence on
the lattice spacing. Since the signal-to-noise ratio is much
worse for correlation functions involving vector mesons in
place of pseudoscalar mesons, we chose to invest compu-
tational effort in obtaining a large statistical sample on
these 3 ensembles. As will be shown in the results sec-
tion, this set of configurations is sufficient given the other
sources of uncertainties.

B. Correlation functions

We use the same action for the light and strange va-
lence quarks as was used in the configuration generation.

For the heavy quark, we use lattice NRQCD [37]. The
specific form of the action is the same as was used in
earlier work by the HPQCD collaboration (e.g. [36]).

SORT OUT UPPER/LOWER INDICES: We use local
interpolating operators ΦB ∼ q̄′γ̂5b and ΦV ∼ q̄′γ̂jq to
annihilate B and V mesons, respectively. We compute
the following 3-point correlation functions for J = q̄Γb,
Γ ∈ {γ̂µ, γ̂µγ̂5, σ̂µν}: ⟨ΦV (x)J(y)Φ†

B(z)⟩.
Paragraph about identities satisfied for correlation

functions which use 2-component heavy quarks.
In fact we analyze correlation functions which project

4

TABLE III: Meson masses (statistical error only). Physical values ignore isospin splittings.

ensemble mB (GeV) mBs
(GeV) mπ (MeV) mK (MeV) mηs

(MeV) mρ (MeV) mK∗ (MeV) mφ (MeV)

c007 5.5439(32) 5.6233(7) 313.4(1) 563.1(1) 731.9(1) 892(28) 1045(6) 1142(3)

c02 5.5903(44) 5.6344(15) 519.2(1) 633.4(1) 730.6(1) 1050(7) 1106(4) 1162(3)

f0062 5.5785(22) 5.6629(13) 344.3(1) 589.3(2) 762.0(1) 971(7) 1035(4) 1134(2)

“physical” 5.279 5.366 140 495 686 775 892 1020

2. Bayesian fits

Our Bayesian approach to fitting correlation functions
follows Refs. [38, 39]. The number of exponentials in-
cluded in the fit functions is increased so that we can
fit data closer to the meson sources and sinks. Gaussian
priors are introduced in order to constrain those fit pa-
rameters which are unconstrained by the numerical data.

3. Results

Paragraph about agreement between fitting methods.
Since we make use of an effective field theory to treat

the b quark, the net energy of a B meson is obtained by
adding the renormalized b quark mass to the energy of
the B meson in the Monte Carlo calculation Esim. For a
B meson with spatial momentum k relative to the lattice
rest frame

E(k) = Esim(k) + Cv . (10)

The additional term is renormalized by interactions:

Cv = Zm(amb) + aE0 . (11)

(At tree level, Zm = 1 and E0 = 0.) The multiplica-
tive and additive renormalization constants have been
computed perturbatively [40]; however, we can determine
them directly from Monte Carlo calculations of hadron
dispersion relations using [41]

Cv =
a2k2 − a2[E2(k) − E2(0)]

2nQa[E(k) − E(0)]
(12)

where nQ is the number of heavy quarks in the hadron.
Since Cv only depends on the heavy quark and gluon ac-
tions, the shift in hadron energies does not depend on
the hadronic state. We can compute the energy of the
1S ηb most precisely, so we determine Cv using with the
ηb momentum |k| = 2π/(aNx). We find consistent re-
sults if we use |k| = 4π/(aNx) and both agree with the
perturbative determination. Within the 0.15% statisti-
cal uncertainties, we find no dependence on the sea quark
mass. Central values for the coarse and fine lattices are
given in Table IV.

We must match the currents involving NRQCD b
quarks to the continuum currents of interest. The re-
sults presented in this paper use the matching performed

TABLE IV: Heavy quark renormalization parameters (given
the heavy quark parameters as in Table II) [36, 40, 42].

ensemble Cv ρ(0) ρ(k) c(T0) c(Tj)

c 2.825 0.043 0.270 0.076 0.076

f 1.996 −0.058 0.332 0.320 0.320

at leading order in 1/mb. In the calculation of B → π
form factors on comparable lattices [36] the effects of in-
cluding next-to-leading order operators were O(1%) or
smaller. Neglecting these contributions will not lead to
a significant error in light of the other uncertainties in
the present calculation. Nevertheless the perturbative
matching has been completed to NLO [MUELLER] and
the code has been written to compute the relevant cor-
relation function [MEINEL??]. For the temporal µ = 0
and spatial components µ = k of the vector Γµ = γ̂µ and
axial vector currents Γµ = γ̂µγ̂5 we write

(q̄ΓV,A
µ b)|cont

.
= (1 + αsρ

(µ))(c̄ΓV,A
µ b)|latt (13)

where the
.
= symbol means that the operators on either

side of the relation have the same matrix elements up
to the stated accuracy. Since staggered fermions have
a remnant chiral symmetry, the perturbative expansions
are equal for vector and axial vector currents. Results
for ρ(0) [40] and ρ(k) [36] are reproduced in Table IV.

The tensor current matching coefficients are defined
through

(q̄σ̂µνb)
.
= (1 + αsc

(Tν))(ψ̄σ̂µνΨ) (14)

CHECK THIS EQUATION. STATEMENT ABOUT
SCALE DEPENDENCE OF TENSOR CURRENT.
EQUIVALENCE OF ν = 0 and ν = j.

Results for the coefficients c(Tµ), are given in Table IV,
reproduced from [42] and private communication from
those authors.

Obtaining the form factors from the fit parameters.

Some statements about quark mass and lattice spacing
dependence.

MILC lattices (2+1 asqtad staggered)
asqtad light & strange quarks

NRQCD bottom quarks

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722] 

http://dx.doi.org/10.1103/PhysRevD.89.094501
http://arxiv.org/abs/1310.3722
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TABLE III: Meson masses (statistical error only). Physical values ignore isospin splittings.
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2. Bayesian fits

Our Bayesian approach to fitting correlation functions
follows Refs. [38, 39]. The number of exponentials in-
cluded in the fit functions is increased so that we can
fit data closer to the meson sources and sinks. Gaussian
priors are introduced in order to constrain those fit pa-
rameters which are unconstrained by the numerical data.

3. Results

Paragraph about agreement between fitting methods.
Since we make use of an effective field theory to treat

the b quark, the net energy of a B meson is obtained by
adding the renormalized b quark mass to the energy of
the B meson in the Monte Carlo calculation Esim. For a
B meson with spatial momentum k relative to the lattice
rest frame

E(k) = Esim(k) + Cv . (10)

The additional term is renormalized by interactions:

Cv = Zm(amb) + aE0 . (11)

(At tree level, Zm = 1 and E0 = 0.) The multiplica-
tive and additive renormalization constants have been
computed perturbatively [40]; however, we can determine
them directly from Monte Carlo calculations of hadron
dispersion relations using [41]

Cv =
a2k2 − a2[E2(k) − E2(0)]

2nQa[E(k) − E(0)]
(12)

where nQ is the number of heavy quarks in the hadron.
Since Cv only depends on the heavy quark and gluon ac-
tions, the shift in hadron energies does not depend on
the hadronic state. We can compute the energy of the
1S ηb most precisely, so we determine Cv using with the
ηb momentum |k| = 2π/(aNx). We find consistent re-
sults if we use |k| = 4π/(aNx) and both agree with the
perturbative determination. Within the 0.15% statisti-
cal uncertainties, we find no dependence on the sea quark
mass. Central values for the coarse and fine lattices are
given in Table IV.

We must match the currents involving NRQCD b
quarks to the continuum currents of interest. The re-
sults presented in this paper use the matching performed

TABLE IV: Heavy quark renormalization parameters (given
the heavy quark parameters as in Table II) [36, 40, 42].

ensemble Cv ρ(0) ρ(k) c(T0) c(Tj)

c 2.825 0.043 0.270 0.076 0.076

f 1.996 −0.058 0.332 0.320 0.320

at leading order in 1/mb. In the calculation of B → π
form factors on comparable lattices [36] the effects of in-
cluding next-to-leading order operators were O(1%) or
smaller. Neglecting these contributions will not lead to
a significant error in light of the other uncertainties in
the present calculation. Nevertheless the perturbative
matching has been completed to NLO [MUELLER] and
the code has been written to compute the relevant cor-
relation function [MEINEL??]. For the temporal µ = 0
and spatial components µ = k of the vector Γµ = γ̂µ and
axial vector currents Γµ = γ̂µγ̂5 we write

(q̄ΓV,A
µ b)|cont

.
= (1 + αsρ

(µ))(c̄ΓV,A
µ b)|latt (13)

where the
.
= symbol means that the operators on either

side of the relation have the same matrix elements up
to the stated accuracy. Since staggered fermions have
a remnant chiral symmetry, the perturbative expansions
are equal for vector and axial vector currents. Results
for ρ(0) [40] and ρ(k) [36] are reproduced in Table IV.

The tensor current matching coefficients are defined
through

(q̄σ̂µνb)
.
= (1 + αsc

(Tν))(ψ̄σ̂µνΨ) (14)

CHECK THIS EQUATION. STATEMENT ABOUT
SCALE DEPENDENCE OF TENSOR CURRENT.
EQUIVALENCE OF ν = 0 and ν = j.

Results for the coefficients c(Tµ), are given in Table IV,
reproduced from [42] and private communication from
those authors.

Obtaining the form factors from the fit parameters.

Some statements about quark mass and lattice spacing
dependence.

MILC lattices (2+1 asqtad staggered)
asqtad light & strange quarks

NRQCD bottom quarks
src = 8 x 

meas = 16 x

R Horgan, Z Liu, S Meinel, MW, Phys. Rev. D 89, 094501 (2014) [arXiv:1310.3722] 

http://dx.doi.org/10.1103/PhysRevD.89.094501
http://arxiv.org/abs/1310.3722
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), and both agree with the per-
turbative determination. Within the 0.15% statistical
uncertainties, we find no dependence on the sea quark
mass. Central values for the coarse and fine lattices are
given in Table III.

In Table II we also give the tadpole improvement pa-
rameters u

P

, determined from the fourth root of the
mean plaquette, and u

L

, determined from the Landau-
gauge mean link; these values are used in the AsqTad and
NRQCD actions, respectively. In the table, n denotes the
NRQCD stability parameter.

In this work we consider only correlation functions with
the B meson at rest in the lattice frame. We investi-
gated the use of moving NRQCD to extend and improve
the kinematic range of the calculation [78], but we con-
cluded that it was more expedient to concentrate on a
high-statistics study with p = 0. We also investigated
the use of stochastic sources to improve the precision of
correlation functions [79]. For vector meson final states
we found it would be more e�cient to use many local
sources, which could be used for any final state momen-
tum, instead of using many stochastic sources, each of
which would correspond to a distinct k [43]. In order to
improve the statistical signal for the B meson two-point
function we perform a 2 ⇥ 2 matrix fit to correlators ob-
tained with both local and smeared sources and sinks.

C. Operator matching

We must match the currents involving NRQCD b
quarks and naive/staggered light quarks to the contin-
uum currents of interest. The matching of the leading-
order currents is such that

(q̄�Ab)|
cont

.
= J A = Z

�

A( ̄
q

�A 
b

)|
latt

(30)

where the
.
= symbol means that the operators on either

side of the relation have the same matrix elements up

TABLE III: Heavy quark and heavy-light current renor-
malization constants (for the parameters as in Table II)
[73, 76, 80]. For the tensor current matching, the matching
scale is taken to be m

b

.

Coarse Fine
C

v

2.825 1.996
⇢(0) 0.043 �0.058

⇣
(0)

10

�0.166 �0.218
⇢(k) 0.270 0.332

⇣
(k)

10

0.055 0.073
⇢([0`]) 0.076 0.320

⇣
([0`])

10

�0.055 �0.073
⇢([k`]) 0.076 0.320

⇣
([k`])

10

�0.055 �0.073

to the stated accuracy. For the temporal (µ = 0) and
spatial (µ = k) components of the vector �A = �µ and
axial vector currents �A = �µ�5, we write

Z
�

µ = Z
�

µ
�

5 = 1 + ↵
s

⇢(µ) , (31)

where ⇢(0) 6= ⇢(k) because we use the NRQCD action.
(The remnant chiral symmetry of staggered fermions as-
sures the first equality.) The tensor matching coe�cients,
i.e. for �A = �µ⌫ and �A = �µ⌫�5, are defined through

Z
�

µ⌫ = Z
�

µ⌫
�

5 = 1 + ↵
s

⇢([µ⌫]) . (32)

The tensor current is not conserved; it runs logarithmi-
cally with a scale µ. This scale dependence is implicitly
included in the coe�cient ⇢([µ⌫]) [80].

Higher dimension operators must be included at next-
to-leading order in the heavy-quark expansion. Denoting
the leading-order currents by JA

0

= ( ̄
q

�A 
b

)|
latt

, we
also compute matrix elements of the dimension-4 opera-
tors JA

1

= � 1

2mb
( ̄

q

�A� · r 
b

)|
latt

. The NLO matching
reads

J A = Z
�

AJA

0

+ JA

1

� ↵
s

⇣
(A)

10

JA

0

(33)

The last term in (33) accounts for the fact that matrix el-
ements of JA

1

include not only the nonperturbative NLO
corrections of order ⇤QCD/mb

but also a perturbative
mixing-down with JA

0

of order 1/am
b

. The matching (33)
neglects corrections of order ↵

s

⇤QCD/mb

and of order ↵2

s

.
Results for ⇢(0) [76], ⇢(k) [73], ⇢([µ⌫]) [80] are reproduced

in Table III, as are the mixing coe�cients ⇣(A)

10

, provided
by private communication from E. Müller.

When we determine the currents to leading order in
O(⇤QCD/mb

) (30) or next-to-leading order (33), we per-
form the matching at a scale q⇤ = 2/a with the motiva-
tion that the truncated terms can be minimized by such

a choice [81]. Taking ↵(3)

V

(7.5 GeV) = 0.21 [82] and run-
ning to the lower scale 2/a gives ↵

V

of 0.30 and 0.24
on the coarse and fine lattices, respectively – these are
the values we used in the matching. Instead if we had
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Form factor error budget

✤ B to V form factors not yet at the level of rigour as other LQCD 
calculations, e.g. B to pseudoscalar form factors 

✤ Must properly deal with resonant nature of vector meson (c.f. 
Briceño, Hansen, Walker-Loud, arXiv:1406.5965) 

✤ Nevertheless, results are at least as reliable as other theoretical 
methods 

✤ Resonance effects likely to be less for φ than for K* — yet similar 
conclusions regarding branching fraction (see below)

Statistical + fitting uncertainties depend on z 
Smaller than systematic unc. in some cases 
Total unc. typically ≈10-20% in data range

15

TABLE X: Results and correlation matrix of the fit to B ! K⇤ form factors P (t; 135MeV)T
1

(t) and P (t; 550MeV)T
2

(t). The
fit implements the constraint that T

1

(0) = T
2

(0).

p value C(p, aT1
0

) C(p, aT1
1

) C(p, cT1
01

) C(p, aT2
0

) C(p, aT2
1

) C(p, cT2
01

) C(p, cT1
01s

)
aT1
0

0.422(24)
aT1
1

�1.37(25) 0.48
cT1
01

0.71(85) �0.75 0.05
aT2
0

0.2830(197) 0.86 0.81 �0.43
aT2
1

0.10(24) 0.82 0.86 �0.37 0.91
cT2
01

0.45(46) �0.51 �0.32 0.39 �0.64 �0.32
cT1
01s

1.223(61) �0.03 0.02 0.01 �0.01 �0.01 0.00
cT2
01s

0.750(38) �0.00 0.00 0.00 �0.01 0.01 0.01 0.00

TABLE XI: Results and correlation matrix of the fit to B
s

! � form factors P (t; 45MeV)T
1

(t) and P (t; 440MeV)T
2

(t). The
fit implements the constraint that T

1

(0) = T
2

(0).

p value C(p, aT1
0

) C(p, aT1
1

) C(p, cT1
01

) C(p, aT2
0

) C(p, aT2
1

) C(p, cT2
01

) C(p, cT1
01s

)
aT1
0

0.4070(104)
aT1
1

�1.093(119) 0.22
cT1
01

1.48(59) �0.67 0.36
aT2
0

0.2890(81) 0.78 0.73 �0.22
aT2
1

0.265(97) 0.74 0.78 �0.18 0.89
cT2
01

0.66(24) �0.48 �0.33 0.25 �0.69 �0.33
cT1
01s

0.974(105) �0.12 0.06 0.02 �0.03 �0.04 0.00
cT2
01s

0.658(48) �0.01 �0.02 �0.00 �0.05 0.01 0.03 0.00

TABLE XII: Estimates of systematic uncertainties. E↵ects
due to light quark mass dependence and lattice spacing de-
pendence are included in the statistical fitting uncertainties.

source size
Truncation of O(↵2

s

) terms 4%
Truncation of O(↵

s

⇤QCD/m
b

) terms 2%
Truncation of O(⇤2

QCD/m
2

b

) terms 1%
Mistuning of m

b

< 1%
Net systematic uncertainty 5%

TABLE XIII: B ! K⇤ form factor ratios. Statistical uncer-
tainties were determined by bootstrap analysis.

ensemble |n|2 V/A
1

A
12

/A
1

T
1

/T
2

T
23

/T
2

f0062 1 2.83(17) 0.70(4) 2.25(10) 1.89(7)
2 2.62(19) 0.69(6) 2.13(14) 1.84(12)
4 2.2(3) 0.69(10) 2.0(2) 1.9(3)

c007 1 2.70(13) 0.62(9) 2.16(12) 1.8(2)
2 2.74(20) 0.79(11) 2.13(17) 2.2(3)
4 2.5(4) 0.75(16) 2.2(4) 1.9(3)

c02 1 2.57(13) 0.64(4) 2.16(11) 1.73(5)
2 2.4(3) 0.62(5) 2.03(14) 1.67(13)
4 1.8(4) 0.73(11) 1.7(3) 2.0(2)

TABLE XIV: B
s

! � form factor ratios. Statistical uncer-
tainties were determined by bootstrap analysis.

ensemble |n|2 V/A
1

A
12

/A
1

T
1

/T
2

T
23

/T
2

f0062 1 2.83(7) 0.635(18) 2.23(7) 1.77(4)
2 2.49(9) 0.636(19) 1.96(6) 1.74(3)
4 2.28(12) 0.73(10) 1.80(8) 2.0(3)

c007 1 2.67(7) 0.627(19) 2.10(5) 1.72(4)
2 2.48(12) 0.59(3) 1.97(11) 1.69(4)
4 2.2(3) 0.65(5) 1.61(19) 1.80(11)

c02 1 2.67(8) 0.597(18) 2.11(8) 1.69(2)
2 2.65(16) 0.60(3) 2.06(11) 1.61(9)
4 2.2(2) 0.62(3) 1.76(15) 1.68(8)

quark mass corresponding to the D⇡ threshold which is
about a 2% e↵ect [107, 108]; the cusp is even smaller
taking into account staggered quark e↵ects [109].

Of course this observation does not constitute a reliable
estimate of the systematic uncertainty due to K⇡ or KK
thresholds. However, we do note that the form factors,
extrapolated to low q2, generally agree with determina-
tions from light-cone sum rules which have systematic
errors of a di↵erent nature. Given that the � is rela-
tively narrow compared to the K⇤, one might expect the
threshold e↵ects to be smaller for B

s

! � form factors
than for B

(s)

! K⇤. In order to make progress, more
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particles and making use of the kinematical identities sketched in appendix A, one obtains
the full angular decay distribution of B̄0 ! K̄§0(! K°º+)µ+µ°:

d4°
dq2 d cos µl d cos µK§ d¡

=
9

32º
I(q2, µl, µK§ , ¡) , (3.9)

where

I(q2, µl, µK§ , ¡) =Is
1

sin2 µK§ + Ic
1

cos2 µK§ + (Is
2

sin2 µK§ + Ic
2

cos2 µK§) cos 2µl

+ I
3

sin2 µK§ sin2 µl cos 2¡ + I
4

sin 2µK§ sin 2µl cos ¡

+ I
5

sin 2µK§ sin µl cos¡

+ (Is
6

sin2 µK§ + Ic
6

cos2 µK§) cos µl + I
7

sin 2µK§ sin µl sin¡

+ I
8

sin 2µK§ sin 2µl sin¡ + I
9

sin2 µK§ sin2 µl sin 2¡ . (3.10)

The corresponding expression for the CP-conjugated mode B0 ! K§0(! K+º°)µ+µ° is

d4°̄
dq2 d cos µl d cos µK§ d¡

=
9

32º
Ī(q2, µl, µK§ , ¡) . (3.11)

The function Ī(q2, µl, µK§ , ¡) is obtained from (3.10) by the replacements [5]

I(a)

1,2,3,4,7 °! Ī(a)

1,2,3,4,7 , I(a)

5,6,8,9 °! °Ī(a)

5,6,8,9 , (3.12)

where Ī(a)

i equals I(a)

i with all weak phases conjugated. The minus sign in (3.12) is a result
of our convention that, while µK§ is the angle between the K̄§0 and the K° flight direction
or between the K§0 and the K+, respectively, the angle µl is measured between the K̄§0

(K§0) and the lepton µ° in both modes. Thus, a CP transformation interchanging lepton
and antilepton leads to the transformations µl ! µl ° º and ¡! °¡, as can be seen from
eqs. (A.1) and (A.2). This convention agrees with refs. [5, 20, 45], but is diÆerent from the
convention used in some experimental publications [10], where µl is defined as the angle
between K§0 and µ+ in the B0 decay, but between K̄§0 and µ° in the B̄0 decay.

The angular coe±cients I(a)

i , which are functions of q2 only, are usually expressed in
terms of K̄§ transversity amplitudes. Since we want to explicitly keep lepton-mass eÆects
and include also contributions from scalar and pseudoscalar operators, this step deserves
a closer look.

3.2 Transversity amplitudes

To introduce the transversity amplitudes, consider for the moment the decay B ! K§V §,
with the B meson decaying to an on-shell K§ and a virtual photon or Z boson (which can
later decay into a lepton-antilepton pair). The amplitude for this process can be written as

M
(m,n)

(B ! K§V §) = ≤§µK§(m)Mµ∫ ≤§∫V §(n) (3.13)

where ≤µ
V §(n) is the polarization vector of the virtual gauge boson, which can be transverse

(n = ±), longitudinal (n = 0) or timelike (n = t). In the B meson rest frame, the four
basis vectors can be written as [43, 46]

≤µ
V §(±) = (0, 1,®i, 0)/

p
2, (3.14)
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Ī(q2, µl, µK§ , ¡) . (3.11)
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Angular distribution for

Similarly for                                                   with                                       andB ! K⇤0(! K+⇡�)µ+µ�

B̄ ! K̄⇤0(! K�⇡+)µ+µ�

I1,2,3,4,7 ! Ī1,2,3,4,7 I5,6,8,9 ! �Ī5,6,8,9

Si =
Ii + Īi

d(�+ �̄)/dq2
Ai =

Ii � Īi
d(�+ �̄)/dq2

P 0
4,5,6,8 =

hS4,5,7,8i
2
p

�hSc
2ihSs

2i
h·i ) binned in q2

Ratios insensitive to f.f. at low q2. Descotes-Genon, Matias, Ramon, Virto [JHEP 01 (2013) 048]



Branching fractions

q2 (GeV2) q2 (GeV2)

Expt: LHCb, CMS & CDF (K*) 
LHCb, CDF (φ)

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887; S Meinel, Paris Workshop 2014
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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which gives
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9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0
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! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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which gives
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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with fit parameters CNP
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9. The contours correspond to
��2 = 2.30, 6.18, 11.83.

which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0
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! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 39–41, 43] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 51–53, 55] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).

tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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FIG. 2. The likelihood function of a fit to the B0 ! K⇤0µ+µ�

and B0
s ! �µ+µ� experimental data above q2 = 14.18GeV2,

with fit parameters CNP
9 and C0

9. The contours correspond to
��2 = 2.30, 6.18, 11.83.

which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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over the B̄0
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s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 51–53, 55] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).

tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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and B0
s ! �µ+µ� experimental data above q2 = 14.18GeV2,

with fit parameters CNP
9 and C0

9. The contours correspond to
��2 = 2.30, 6.18, 11.83.

which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 51–53, 55] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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and B0
s ! �µ+µ� experimental data above q2 = 14.18GeV2,

with fit parameters CNP
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9. The contours correspond to
��2 = 2.30, 6.18, 11.83.

which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
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9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0
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also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0
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Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
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the experimental data for all observables in bin 2 only,
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which gives
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A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 51–53, 55] (note that S(LHCb)
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4 = �P 0
4).

tainties in Eq. (14) are influenced by the theoretical and
experimental uncertainties, we performed new fits where
we artificially eliminated or reduced di↵erent sources of
uncertainty. In particular, setting all form factor un-
certainties to zero results in CNP

9 = �0.9 ± 0.4, C 0
9 =

0.7±0.5, and raises the statistical significance for nonzero
(CNP

9 , C 0
9) from 2� to 3�. Reducing instead the exper-

imental uncertainties can have a more dramatic e↵ect,
because some of the angular observables already have
very small theory uncertainties compared to the current
experimental uncertainties.

Our result (14) is in remarkable agreement with the
result (8) of the fit performed in Ref. [16], which did
not include the B0

s

! � µ+µ� data. Equation (14) is
also consistent with the value CNP

9 ⇠ �1.5 obtained in
Ref. [15], and with the very recent Bayesian analysis of
Ref. [22]. As expected [16, 18], the new-physics scenario
(14) does not remove the tension seen in bin 1 for S4/P 0

4.
Nevertheless, the fit (14) significantly improves the over-
all agreement with the data, reducing the total �2 by 5.7
and giving �2/d.o.f = 0.96. We also performed a fit of
the experimental data for all observables in bin 2 only,
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FIG. 2. The likelihood function of a fit to the B0 ! K⇤0µ+µ�

and B0
s ! �µ+µ� experimental data above q2 = 14.18GeV2,

with fit parameters CNP
9 and C0

9. The contours correspond to
��2 = 2.30, 6.18, 11.83.

which gives

CNP
9 = �0.9 ± 0.7, C 0

9 = 0.4 ± 0.7 (bin 2 only). (15)

A major concern about the calculations is the possi-
bility of larger-than-expected contributions from broad



Low q2 discrepancy

6

0 2 4 6 8

-0.5

0.0

0.5

q2 HGeV2L

XP 2\

0 2 4 6 8
-0.5

0.0

0.5

1.0

1.5

q2 HGeV2L

XP 4¢ \

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

q2 HGeV2L

XP 5¢ \

0 2 4 6 8

-0.5

0.0

0.5

q2 HGeV2L

XP 2\

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

q2 HGeV2L

XP 5¢ \

FIG. 2: Comparison between the SM predictions (gray boxes), the experimental measurements (blue data points) and the
predictions for the scenario with CNP

9 = �1.5 and other CNP
i = 0 (red squares).

3. ROBUSTNESS OF THE RESULTS

In view of the results of the previous section, it is im-
portant to assess the robustness of the NP interpretation
for the B ! K

⇤
µ

+
µ

� anomaly and how stable the con-
clusion CNP

9 < 0 is, taking into account potential pollu-
tion from SM sources mimicking a negative CNP

9 .

3.1. Charm Loop

One of the key sources of uncertainty in the extraction
of C9 from B ! K

⇤
µ

+
µ

� is related to the charm-loop
contribution (subsequently decaying through a photon
into a dilepton pair) coming from the insertion of 4-quark
current-current (Oc

1,2) or penguin operators (O3�6). The
contributions from Oc

1,2 are particularly important since
the Wilson coe�cients are numerically large and the pro-
cesses are not CKM suppressed. This contribution can
be described through a short-distance (perturbative) con-
tribution, which exhibits a noticeable sensitivity to the
value of m

c

near the threshold of cc̄ production, and
a long-distance (non-perturbative) contribution which is
di�cult to assess.

The perturbative charm-loop contribution is usually

absorbed into the definition of Ce↵
9 (q2) = C9 + Y (q2) [22]

and is given at leading order by

Y

c(q2,m
c

) = � 4

27
(4C1 + 3C2 + 18C3 + 180C5)⇥ (5)

⇥

ln

m

2
c

µ

2
� 2

3
� z + (2 + z)

p
|z � 1| arccot

p
(z � 1)

�

where z = 4m2
c

/q

2. There is a threshold at q2 = 4m2
c

'
6 GeV2, above which Eq. (5) must be continued ana-
lytically and an imaginary part is generated. The real
part exhibits a cusp at this threshold, whose exact po-
sition depends on m

c

. There is a significant variety of
choices in the literature concerning the value of m

c

for
such computation, for instance the pole mass (around 1.4
GeV) [22], the MS mass at the scale µ = m

c

(around 1.27
GeV) [39] or the same mass at the scale µ = 2m

c

(around
1 GeV) [37]. Following Ref. [21], we take the second op-
tion and perform the computation of B ! K

⇤
µ

+
µ

� ob-
servables with a reference value m

c

= 1.27 GeV. We can
study the dependence on m

c

by reinterpreting its change
as a shift in the value of C9, given by:

�Ccc̄,pert
9 = Re[Y c(q2,m

c

)� Y

c(q2,m
c

)] . (6)

The same analysis can be performed for the imaginary

Descotes-Genon, Matias, Virto [PRD88, 074002, (2013), arXiv:1307.5683]
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FIG. 1: Fit to (CNP
7 , CNP

9 ), using the three large-recoil bins
for B ! K⇤µ+µ� observables, together with B ! Xs�, B !
Xsµ

+µ�, B ! K⇤� and Bs ! µ+µ�. The dashed contours
include both large- and low-recoil bins, whereas the orange
(solid) ones use only the 1-6 GeV2 bin for B ! K⇤µ+µ�

observables. The origin CNP
7,9 = (0, 0) corresponds to the SM

values for the Wilson coe�cients CSM
7e↵,9 = (�0.29, 4.07) at

µb = 4.8 GeV.

and dileptonic decays, lead to contours in the (CNP
7 , CNP

9 )
plane similar to Fig. 1.

We would like to understand whether this conclusion
is due to peculiarities of individual bins. For this pur-
pose we repeat the analysis restricting the input for the
B ! K

⇤
µ

+
µ

� observables to [1, 6] GeV2 bins, exploiting
several theoretical and experimental advantages. Such
wider bins collect more events with larger statistics. Fur-
thermore, some theoretical issues are less acute, such as
the e↵ect of low-mass resonances at very low q

2 . 1
GeV2 [36], or the impact of charm loops above ⇠ 6
GeV2 [37]. On the other hand, integrating over such a
large bin washes out some e↵ects related to the q2 depen-
dence of the observables, so that we expect this analysis
to have less sensitivity to NP [15]. This can be seen in
Fig. 1, where the regions in this case are indicated by
the orange curves, and as expected the constraints get
slightly weaker. In addition, due to the fact that the-
oretical uncertainties happen to increase moderately for
large negative NP contributions to C9, the constraints are
looser in the lower region of the (CNP

7 , CNP
9 ) plane. We

emphasise that even in this rather conservative situation
the main conclusion (a NP contribution CNP

9 ⇠ �1.5)
still prevails, whereas the SM hypothesis has still a pull
of 3.2�.

We illustrate the improvement gained by shifting C9 in
Fig. 2, where we show the predictions for CNP

9 = �1.5

(and other CNP
i

= 0) for the observables P2, P 0
4 and P

0
5,

together with the experimental data and SM predictions.
In particular, we observe how the various observables de-
scribed in Sec. 1 change for CNP

9 < 0. If the data is in
general well reproduced in this scenario, there are still a
few observables di�cult to explain theoretically. Looking
at Fig. 2, the most obvious cases are hP 0

5i in the first and
third bins. One can see there is a tension between these
two bins: more negative values for CNP

9 reproduce bet-
ter the third bin, but drive the first bin upwards, whose
experimental value is consistent with the SM. A similar
situation happens with the second and third bins of hP2i,
although in this case a good compromise is achieved.

Concerning the individual constraints to the fit, the
large-recoil bins for P2 and P

0
5 both favour the same

large region away from the SM in the (CNP
7 , CNP

9 ) plane,
providing a negative correlation between CNP

7 and CNP
9 .

B ! X

s

� selects values of CNP
7 close to the SM value,

leading to the combined (smaller) region shown in Fig. 1.
To be more quantitative, we have considered the pulls
obtained by removing in turn one or two observables
from the fit. We find that the largest pulls are as-
sociated to hP 0

5i[4.3,8.68], B ! X

s

�, hP2i[14.18,16] and
hP 0

4i[14.18,16]. B ! X

s

� has a large pull because it plays a
very important role in disfavouring a scenario with large
and negative CNP

7 , which can mimic the CNP
9 scenario in

B ! K

⇤
µ

+
µ

� observables. The observables hP 0
5i[4.3,8.68]

and hP2i[14.18,16] pull in di↵erent directions: the former
favours more negative and the latter less negative values
for CNP

9 , while the best fit point lies somewhat in the
middle, with or without these observables. On the other
hand hP 0

4i[14.18,16] has a marginal e↵ect on the results of
the fit.

The role of individual observables is confirmed by
comparing our analysis with the preliminary results in
Ref. [25], performed in the same framework, but with
only P1,P2 and AFB as inputs for B ! K

⇤
µ

+
µ

�, lead-
ing to a 3� deviation from the SM in the (CNP

7 , CNP
9 )

plane (in our present analysis, this e↵ect is magnified by
the addition of P 0

4,5,6,8 [20] among the observables). We
emphasise the importance of choosing the right set of ob-
servables among the three correlated inputs AFB, P2, FL

:
F

L

has a very significant dependence on the choice of
form factors (Fig. 5), which is less acute in the case of
AFB and P2, so that the choices (F

L

, P2) or (F
L

, AFB)
[38] lead to results that are more biased by the specific
parametrisation of form factors considered and less sen-
sitive to NP compared to (AFB, P2) [25]. For this rea-
son, we use AFB instead of F

L

in our analysis. We have
checked by two di↵erent procedures (NLO QCD factori-
sation and naive factorisation) that the 3� deviation re-
ported in Ref. [25] using [1-6] bins gets reduced to around
1 � if F

L

is used as an input instead of P2 or AFB (in
agreement with Ref. [38], where F

L

is used).



But another fit…
Consistent with SM (and also with negative NP contribution to C9)
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no B ! K⇤ lattice B ! K⇤ lattice

prior SM(⌫-only) SM SM+SM0 prior SM(⌫-only) SM SM+SM0

V (0) 0.35+0.13
�0.08 0.38+0.04

�0.02 0.38+0.03
�0.03 0.38+0.04

�0.03 0.37+0.03
�0.02 0.38+0.03

�0.02 0.38+0.03
�0.02 0.37+0.02

�0.02

bV
1

�4.8+0.8
�0.3 �4.8+0.7

�0.4 �4.8+0.6
�0.4 �4.8+0.6

�0.4 �4.7+0.7
�0.4 �4.7+0.7

�0.5 �4.8+0.7
�0.3 �4.8+0.6

�0.3

A
1

(0) 0.27+0.09
�0.05 0.24+0.03

�0.02 0.24+0.03
�0.03 0.28+0.04

�0.03 0.29+0.03
�0.03 0.26+0.02

�0.02 0.26+0.03
�0.02 0.28+0.03

�0.03

bA1
1

0.4+0.8
�0.8 0.5+0.6

�0.7 0.5+0.6
�0.6 0.0+0.7

�0.7 0.4+0.6
�0.5 0.1+0.4

�0.6 0.1+0.5
�0.5 0.3+0.4

�0.6

A
2

(0) 0.24+0.13
�0.07 0.23+0.04

�0.04 0.22+0.05
�0.04 0.27+0.06

�0.05 0.29+0.05
�0.05 0.27+0.03

�0.04 0.26+0.04
�0.03 0.28+0.04

�0.03

bA2
1

�0.7+2.3
�1.4 �0.9+1.7

�1.0 �0.9+1.7
�1.1 �0.7+1.8

�1.2 �1.6+1.1
�0.7 �2.0+0.9

�0.6 �1.9+0.8
�0.7 �1.4+1.0

�0.8

f
+

(0) 0.34+0.02
�0.02 0.31+0.02

�0.01 0.30+0.03
�0.01 0.34+0.02

�0.02 0.34+0.02
�0.02 0.32+0.01

�0.02 0.32+0.02
�0.02 0.33+0.03

�0.02

b
f+
1

�1.7+0.4
�0.5 �2.3+0.3

�0.3 �2.4+0.4
�0.4 �1.7+0.4

�0.5 �1.7+0.4
�0.5 �2.2+0.3

�0.4 �2.1+0.2
�0.4 �1.8+0.4

�0.4

V (0)/A
1

(0) 1.25+0.41
�0.23 1.31+0.31

�0.31 1.57+0.20
�0.20 1.29+0.21

�0.17 1.27+0.18
�0.13 1.49+0.13

�0.16 1.42+0.16
�0.13 1.32+0.10

�0.10

A
2

(0)/A
1

(0) 0.97+0.12
�0.12 0.97+0.10

�0.15 0.95+0.09
�0.07 0.96+0.09

�0.06 1.00+0.08
�0.09 1.02+0.06

�0.07 1.00+0.07
�0.05 0.99+0.05

�0.05

TABLE III. 1D-marginalized posterior results at 68% probability in comparison to the prior inputs for the various B ! K⇤

(upper rows) and B ! K (middle two rows) form-factor parameters. The results are shown for the “full” (left) and “full
(+FF)” (right) data set in various scenarios. The priors for the “full” data set comprise LCSR [35] inputs combined with the
additional constraints (A.1) – (A.3) and B ! K lattice results [50], whereas for “full (+FF)” the B ! K⇤ lattice results [51]
are added. Note that the marginalization has been performed over all solutions A,B in the case of SM and A0 �D0 in the case
of SM+SM0.
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FIG. 2. Credibility regions of the Wilson coe�cients C
7,9,10 obtained from the fit of the “full” data set after the EPSHEP 2013

conference at 68% (dark red) and 95% (light red) probability. The SM-like solution A (upper row) and the flipped-sign solution
B (lower row) are magnified. Overlaid are the results of the fit to the “selection” data set at 68% (blue, solid line) and 95%
(blue, dashed line). The black diamond and the black cross represent the projections of the SM point and the best-fit point to
the respective 2D plane.

Assuming the prior range of each Ci, i = 7, 9, 10, were
shrunk to one half of the nominal range in the SM sce-
nario such that solution A is still fully contained, the
volume changes as V

0

! V
0

/8 and a fit would yield a

Bayes factor of

P (full|SM)

P (full|SM(⌫-only))

���
A
= 1 : 103 . (IV.7)

In the absence of substantial improvements in the
handling of subleading contributions to the B !
K(⇤)`+`� amplitudes, we are forced to conclude that the

Orange: full fit. Blue: selection fit

Beaujean, Bobeth, van Dyk, [Eur. Phys. J. C 74 (2014), arXiv:1310.2478]



Vector meson decay

✤ Briceño, Hansen, Walker-Loud [arXiv:1406.5965] have extended 
the Lellouch-Lüscher method for K ➙ ππ to B ➙ K* form factors, 
correctly including πK and ηK states on the lattice 

✤ Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158] have begun 
the necessary step of numerically calculating states with quantum 
numbers of K*, πK, and ηK on the lattice 

✤ Phase shifts must be determined precisely: derivatives enter 
matrix element formalism 

✤ Formalism worked out for unitary actions.  No good for partial 
quenching or staggered.
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1 spectrum (dominated by JP = 0+ with negligible contributions

from J � 4). (b) ~P = [001], ⇤ = A1 spectrum (JP = 0+, 1�, 2+ all contribute).

FIG. 2. (a) JP = 0+ amplitudes – open circles on axis show ⇡K and ⌘K thresholds. Upper panel: ⇡K and ⌘K phase-shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix
extraction – solid points show ~P = ~0, open circles show ~P 6= ~0. (b) JP = 1� around the ⇡K threshold. Points determined
directly without parameterization of the vector amplitude from three volumes: 163(boxes), 203(circles) and 243(triangles).

Curve shows the result of a relativistic Breit-Wigner parameterization, p3 cot �1 = (m2
R � s) 6⇡

p
s

g2R
. (c) JP = 2+ amplitudes –

open circles on axis show ⇡K, ⌘K and ⇡⇡K thresholds.

constant matrix, while the ⇡K threshold region in 1� is
described by a relativistic Breit-Wigner. We assume that
the influence of partial-waves, J � 3, is negligible in this
energy region.

The resulting t-matrices are plotted in Fig. 2 – for
0+, 2+, ⇡K and ⌘K phase-shifts and an inelasticity, de-

fined in t
ii

= (⌘e

2i�i�1)

2i⇢i
, t

ij

=
p

1�⌘

2
e

i(�i+�j)

2

p
⇢i ⇢j

, for channels

i = ⇡K, ⌘K, are shown, while for 1� we plot the func-
tion p3 cot �, which is real and continuous across the ⇡K
threshold. In each case we present the �2/N

dof

for the
parameterized description of the input spectrum, which
we find to be quite acceptable.

The points shown in the center of Fig. 2(a), which
cover the whole energy region plotted, indicate that we
are strongly constraining the energy dependence of the
amplitudes; in particular note that the low-energy be-

havior of the 0+ ⇡K amplitude is constrained by points
at or below threshold. Similarly in Fig. 2(c), the energy
dependence of the 2+ amplitude is well sampled in the
region of the rapid rise of the phase-shift. This region is
above the ⇡⇡K threshold, which can in principle couple
to the 2+ partial-wave – we have assumed here that there
is negligible coupling to this channel.

We observe that the ⇡K phase-shifts in 0+, 2+ rise
through 90� suggesting resonant behavior, and while this
rise is slow in the scalar channel, it is rapid in the ten-
sor, indicating a likely narrow resonance. The extracted
inelasticities are compatible with unity corresponding to
an approximate decoupling of the ⌘K channel from ⇡K.
The ⌘K amplitudes are found to be weak and repulsive.

The 1� amplitude around the ⇡K threshold, shown in
Fig. 2(b), has the behavior expected of a bound-state,

Dudek, Edwards, Thomas, Wilson [arXiv:1406.4158]
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constant matrix, while the ⇡K threshold region in 1� is
described by a relativistic Breit-Wigner. We assume that
the influence of partial-waves, J � 3, is negligible in this
energy region.
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tion p3 cot �, which is real and continuous across the ⇡K
threshold. In each case we present the �2/N

dof

for the
parameterized description of the input spectrum, which
we find to be quite acceptable.

The points shown in the center of Fig. 2(a), which
cover the whole energy region plotted, indicate that we
are strongly constraining the energy dependence of the
amplitudes; in particular note that the low-energy be-

havior of the 0+ ⇡K amplitude is constrained by points
at or below threshold. Similarly in Fig. 2(c), the energy
dependence of the 2+ amplitude is well sampled in the
region of the rapid rise of the phase-shift. This region is
above the ⇡⇡K threshold, which can in principle couple
to the 2+ partial-wave – we have assumed here that there
is negligible coupling to this channel.

We observe that the ⇡K phase-shifts in 0+, 2+ rise
through 90� suggesting resonant behavior, and while this
rise is slow in the scalar channel, it is rapid in the ten-
sor, indicating a likely narrow resonance. The extracted
inelasticities are compatible with unity corresponding to
an approximate decoupling of the ⌘K channel from ⇡K.
The ⌘K amplitudes are found to be weak and repulsive.

The 1� amplitude around the ⇡K threshold, shown in
Fig. 2(b), has the behavior expected of a bound-state,

Points: Lattice QCD data.   
Red curves: noninteracting πK levels (discrete momenta) 
Green: noninteracting ηK levels (discrete momenta)

Before looking B ➙ K* (➙K π) form factors, the πK and ηK systems must first be 
studied.  This has been done by HSC on nf =2, improved-Wilson fermion configurations.

JP = 0+ contribute JP = 0+, 1-, 2+ contribute

~P = [000] ~P = [001]
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constant matrix, while the ⇡K threshold region in 1� is
described by a relativistic Breit-Wigner. We assume that
the influence of partial-waves, J � 3, is negligible in this
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cover the whole energy region plotted, indicate that we
are strongly constraining the energy dependence of the
amplitudes; in particular note that the low-energy be-

havior of the 0+ ⇡K amplitude is constrained by points
at or below threshold. Similarly in Fig. 2(c), the energy
dependence of the 2+ amplitude is well sampled in the
region of the rapid rise of the phase-shift. This region is
above the ⇡⇡K threshold, which can in principle couple
to the 2+ partial-wave – we have assumed here that there
is negligible coupling to this channel.

We observe that the ⇡K phase-shifts in 0+, 2+ rise
through 90� suggesting resonant behavior, and while this
rise is slow in the scalar channel, it is rapid in the ten-
sor, indicating a likely narrow resonance. The extracted
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Precise determination of phase shifts, and derivatives, are necessary ingredients to  
formalism for B ➙ K* (➙K π) form factors
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constant matrix, while the ⇡K threshold region in 1� is
described by a relativistic Breit-Wigner. We assume that
the influence of partial-waves, J � 3, is negligible in this
energy region.
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tion p3 cot �, which is real and continuous across the ⇡K
threshold. In each case we present the �2/N
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for the
parameterized description of the input spectrum, which
we find to be quite acceptable.

The points shown in the center of Fig. 2(a), which
cover the whole energy region plotted, indicate that we
are strongly constraining the energy dependence of the
amplitudes; in particular note that the low-energy be-

havior of the 0+ ⇡K amplitude is constrained by points
at or below threshold. Similarly in Fig. 2(c), the energy
dependence of the 2+ amplitude is well sampled in the
region of the rapid rise of the phase-shift. This region is
above the ⇡⇡K threshold, which can in principle couple
to the 2+ partial-wave – we have assumed here that there
is negligible coupling to this channel.

We observe that the ⇡K phase-shifts in 0+, 2+ rise
through 90� suggesting resonant behavior, and while this
rise is slow in the scalar channel, it is rapid in the ten-
sor, indicating a likely narrow resonance. The extracted
inelasticities are compatible with unity corresponding to
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Matrix elements of nonlocal operators

3

first lattice QCD calculation of the complete set of form factors giving the B → K∗ and Bs → φ matrix elements

of the operators O(′)
7 , O(′)

9 , and O(′)
10 in the high-q2 region [23]. In the following, we use these results to calculate

the differential branching fractions and the angular observables for the decays B̄0 → K̄∗0(→ K−π+)µ+µ− and
B̄0

s → φ(→ K−K+)µ+µ−.
In the narrow-width approximation, the B̄0 → K−π+µ+µ− decay amplitude can be written in terms of the

B̄0 → K̄∗0µ+µ− decay amplitude as explained in Ref. [32]. This amplitude takes the form

M =
GF α√
2π

VtbV
∗

ts

[

(Aµ + Tµ)ūℓγµvℓ + Bµūℓγ
µγ5vℓ

]

, (9)

with the local hadronic matrix elements
✿

,

Aµ = −
2mb

q2
qν⟨K̄∗| s̄ iσµν(C7PR + C′

7PL)b |B̄⟩

+ ⟨K̄∗| s̄γµ(C9PL + C′

9PR)b |B̄⟩, (10)

Bµ = ⟨K̄∗| s̄γµ(C10PL + C′

10PR)b |B̄⟩, (11)

and the nonlocal hadronic matrix element,
✿

Tµ =
−16iπ2

q2

∑

i=1...6;8

Ci

∫

d4x eiq·x ⟨K̄∗| TOi(0) jµ(x) |B̄⟩. (12)

In Eq. (12), jµ(x) denotes the quark electromagnetic current. Near q2 = m2
J/ψ(1S),m

2
ψ(2S), the contributions from

O1 and O2 in Tµ are resonantly enhanced, preventing reliable theoretical calculations in these regions. At high q2

(∼ m2
b), Tµ can be expanded in an operator product expansion (OPE), with the result [42]

✿

,
✿

Tµ = −T7(q
2)
2mb

q2
qν⟨K̄∗| s̄ iσµνPRb |B̄⟩

+T9(q
2)⟨K̄∗|s̄γµPLb|B̄⟩+

1

2q2

5
∑

i=1

Bi⟨K̄∗|O(−1)
iµ |B̄⟩

+O(Λ2/m2
b , m4

c/q
4). (13)

(See also Ref. [43] for an alternative version of the OPE.) In Eq. (13), the O(−1)
iµ are dimension-4

✿✿✿✿✿✿✿✿✿✿✿✿✿

dimension-four

operators containing a derivative, and T7,9(q2) = Ceff
7,9(q

2) − C7,9 with Ceff
7,9(q

2) given by Eqs. (3.9) and (3.10) of
Ref. [4].
The matrix elements ⟨K̄∗| s̄Γb |B̄⟩ (and analogously for B̄s → φ) in Eqs. (10), (11), and (13) can be written in

terms of the seven form factors V , A0, A1, A12, T1, T2, and T23 [23]. We describe the dependence of the form factors
on q2 using the simplified series expansion [44]. The corresponding parameters were obtained by fitting the lattice
QCD data, and are given in Tables VII-

✿

–XI of Ref. [23]. The matrix elements of the dimension-4
✿✿✿✿✿✿✿✿✿✿✿✿✿

dimension-four
operators in Eq. (13) have not yet been calculated in lattice QCD, and we will neglect this term. This introduces a
small systematic uncertainty of order αsΛ/mb ∼ 2% [42].
We take the Standard-Model

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model
✿

values of the Wilson coefficients C1,2,...,10, calculated at next-to-next-
to-leading-logarithmic order, from Ref. [2]. Following the same reference, we set αs(mb) = 0.214, mc(mc) = 1.3 GeV,
and mb(mb) = 4.2 GeV. We evaluate the electromagnetic coupling at µ = mb, corresponding to α = 1/133, which
minimizes higher-order electroweak corrections [45]. We take the hadron masses from the Particle Data Group [46]
and use the mean life times τB0 = 1.519(7) ps and τB0

s

= 1.516(11) ps from Ref. [1]. We take |VtbV ∗

ts| = 0.04088(57)
from the Summer 2013 Standard-Model

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model
✿

fit of Ref. [47].
While the decay B̄0 → K̄∗0(→ K−π+)µ+µ− is self-tagging, the final state of B̄0

s → φ(→ K−K+)ℓ+ℓ− does not
determine whether it resulted from the decay of a B̄0

s or a B0
s meson. Therefore, we calculate the time-integrated

untagged average over the B̄0
s and B0

s decay distributions, including the effects of B̄0
s -B

0
s mixing as explained in

Ref. [48]. We use the width difference ∆Γs = 0.081(11) ps−1 [1].
Our results for the differential branching fractions dB/dq2 = τB0

(s)
dΓ/dq2 and the angular observables FL, S3, S4,

P ′

4, S5, P ′

5, AFB , where FL = −Sc
2 and AFB = (−3/8)(2Ss

6 + Sc
6), are shown in Fig. 1 (the observables S7,8,9 as well

as the CP
✿✿✿

CP
✿

asymmetries A(a)
i are expected to be close to zero in the Standard Model

✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model). The shaded
bands in Fig. 1 indicate the total theoretical uncertainty, originating from the following sources: the statistical /

✿✿

or
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terms of the seven form factors V , A0, A1, A12, T1, T2, and T23 [23]. We describe the dependence of the form factors
on q2 using the simplified series expansion [44]. The corresponding parameters were obtained by fitting the lattice
QCD data, and are given in Tables VII-
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µγ5vℓ

]

, (9)

with the local hadronic matrix elements
✿

,

Aµ = −
2mb

q2
qν⟨K̄∗| s̄ iσµν(C7PR + C′

7PL)b |B̄⟩

+ ⟨K̄∗| s̄γµ(C9PL + C′

9PR)b |B̄⟩, (10)

Bµ = ⟨K̄∗| s̄γµ(C10PL + C′

10PR)b |B̄⟩, (11)

and the nonlocal hadronic matrix element,
✿

Tµ =
−16iπ2

q2

∑

i=1...6;8

Ci

∫

d4x eiq·x ⟨K̄∗| TOi(0) jµ(x) |B̄⟩. (12)

In Eq. (12), jµ(x) denotes the quark electromagnetic current. Near q2 = m2
J/ψ(1S),m

2
ψ(2S), the contributions from

O1 and O2 in Tµ are resonantly enhanced, preventing reliable theoretical calculations in these regions. At high q2

(∼ m2
b), Tµ can be expanded in an operator product expansion (OPE), with the result [42]

✿

,
✿

Tµ = −T7(q
2)
2mb

q2
qν⟨K̄∗| s̄ iσµνPRb |B̄⟩

+T9(q
2)⟨K̄∗|s̄γµPLb|B̄⟩+

1

2q2

5
∑

i=1

Bi⟨K̄∗|O(−1)
iµ |B̄⟩

+O(Λ2/m2
b , m4

c/q
4). (13)

(See also Ref. [43] for an alternative version of the OPE.) In Eq. (13), the O(−1)
iµ are dimension-4

✿✿✿✿✿✿✿✿✿✿✿✿✿

dimension-four

operators containing a derivative, and T7,9(q2) = Ceff
7,9(q

2) − C7,9 with Ceff
7,9(q

2) given by Eqs. (3.9) and (3.10) of
Ref. [4].
The matrix elements ⟨K̄∗| s̄Γb |B̄⟩ (and analogously for B̄s → φ) in Eqs. (10), (11), and (13) can be written in

terms of the seven form factors V , A0, A1, A12, T1, T2, and T23 [23]. We describe the dependence of the form factors
on q2 using the simplified series expansion [44]. The corresponding parameters were obtained by fitting the lattice
QCD data, and are given in Tables VII-

✿

–XI of Ref. [23]. The matrix elements of the dimension-4
✿✿✿✿✿✿✿✿✿✿✿✿✿

dimension-four
operators in Eq. (13) have not yet been calculated in lattice QCD, and we will neglect this term. This introduces a
small systematic uncertainty of order αsΛ/mb ∼ 2% [42].
We take the Standard-Model

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model
✿

values of the Wilson coefficients C1,2,...,10, calculated at next-to-next-
to-leading-logarithmic order, from Ref. [2]. Following the same reference, we set αs(mb) = 0.214, mc(mc) = 1.3 GeV,
and mb(mb) = 4.2 GeV. We evaluate the electromagnetic coupling at µ = mb, corresponding to α = 1/133, which
minimizes higher-order electroweak corrections [45]. We take the hadron masses from the Particle Data Group [46]
and use the mean life times τB0 = 1.519(7) ps and τB0

s

= 1.516(11) ps from Ref. [1]. We take |VtbV ∗

ts| = 0.04088(57)
from the Summer 2013 Standard-Model

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model
✿

fit of Ref. [47].
While the decay B̄0 → K̄∗0(→ K−π+)µ+µ− is self-tagging, the final state of B̄0

s → φ(→ K−K+)ℓ+ℓ− does not
determine whether it resulted from the decay of a B̄0

s or a B0
s meson. Therefore, we calculate the time-integrated

untagged average over the B̄0
s and B0

s decay distributions, including the effects of B̄0
s -B

0
s mixing as explained in

Ref. [48]. We use the width difference ∆Γs = 0.081(11) ps−1 [1].
Our results for the differential branching fractions dB/dq2 = τB0

(s)
dΓ/dq2 and the angular observables FL, S3, S4,

P ′

4, S5, P ′

5, AFB , where FL = −Sc
2 and AFB = (−3/8)(2Ss

6 + Sc
6), are shown in Fig. 1 (the observables S7,8,9 as well

as the CP
✿✿✿

CP
✿

asymmetries A(a)
i are expected to be close to zero in the Standard Model

✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

model). The shaded
bands in Fig. 1 indicate the total theoretical uncertainty, originating from the following sources: the statistical /

✿✿

or

b ! s `+`� decays

Decay amplitude:

M =
GF ↵p
2⇡

VtbV
⇤
ts

h
(Aµ + Tµ)ū`�

µv` + Bµū`�
µ�

5

v`
i
,

• Nonlocal:

Tµ =
�16i⇡2

q2

X

i=1...6;8

Ci

Z
d4x e iq·x hK⇤| T Oi (0) jµ(x) |Bi

Affects all b ➙ sll decays, regardless of initial/final hadrons



✤ First correction in expansion (mc2/q2) simply augments C7eff and C9eff : Buras, 
Misiak, Münz, Pokorski (BMMP) ➙ Grinstein, Pirjol (GP) 

✤ Order αsΛ/mb corrections calculable on lattice 

✤ Local duality: bin observables in q2  

✤ Duality violations estimated to be small (~2% in model): Beylich, Buchalla, 
Feldmann, [Eur. Phys. J C71, 1635 (2011), arXiv:1101.5118] 

✤ On the other hand, Lyon & Zwicky [arXiv:1406.0566] claim charmonium 
resonances can have a much larger effect, even on binned observables: “complete 
breakdown of factorization”

OPE at large q2

T µ = �T7(q
2)

2mb

q2
q⌫hK̄⇤|s̄ i�µ⌫PRb|B̄i

+O

✓
↵s⇤

mb
,
⇤2

m2
b

,
m4

c

q4

◆
+T9(q

2)hK̄⇤|s̄�µPLb|B̄i

Grinstein & Pirjol, PRD 70, 114005 (2004)

The operator O!"1#
5 describes effects where one chirality

flip occurs on the light quark side. Its matrix element
scales like Qms.

There are no contributions scaling like Qmc, since the
dependence on the charm quark mass must contain only
even powers of mc. The leading contributions containing
mc scale like m2

c and come from operators similar to (9)
and (10). We will define them as

O !0#
1 $ m2

c !sL%!" " q"q6 =q2&hvL; (17)

O !0#
2 $ imb

m2
c

q2
!sL#"$q$hvR: (18)

There are many operators whose matrix elements scale
like "2; generally, they are of the form O!0#

3;... $
!q#!iD"#!iD$#hv or contain one factor of the gluon tensor
field strength !q#gG"$hv. The latter operators can appear
at O!%0

s# in matching from graphs with q !q quark loops as
shown in Fig. 2(c), and can contribute to the B!
K'‘(‘" amplitude through the graph in Fig. 1(a).

Another class of operators appearing in the OPE de-
scribes effects of propagating charm quarks [see
Fig. 1(b)], and have the form

O !2# $ 1

Q2 ! !s#hv#! !c#ciD"c#: (19)

The explicit form of these operators will be given in the
next section, where it is shown that their contributions are
further suppressed by m4

c=Q4 relative to the short-
distance amplitude.

To sum up the discussion of this section, we argued that
the long-distance effects to b! s‘(‘" decays in the zero
recoil region come from well-separated scales satisfying
the hierarchy mb )Q>mc >". These effects can be
resolved using an OPE as shown in Eq. (8). The contri-
butions of the various operators in the OPE, relative to the
dominant short-distance amplitude, are summarized in
Table I, together with the order in matching [in %s!Q#] at
which they start contributing.

Some of the subleading operators appearing in the OPE
give spectator- type contributions to the exclusive B!
K'‘(‘" amplitude, as shown in Fig. 1. For example, the
O!"Q# operators O!"1#

j and O!"2# operators O!0#
j can

contribute through the graphs in Fig. 1(a) and the charm
operators of the type Eq. (19) contribute as in Fig. 1(b).
Such spectator-type contributions were studied at lowest
order in perturbation theory in [14] where they were
shown to be suppressed at least by "=Q. The effective
theory approach used here extends this proof to all orders
in %s and shows that the suppression factor is %s!Q#"=Q
(for the contributions from O!"1#

j ) and "2=Q2 (for con-

tributions coming from O!0#
j ).

We comment briefly on an alternative approach used in
Refs. [10,14] where the charm quarks and the large scales
!!!!!

q2
p

; mb are integrated out simultaneously. Such an ap-
proach includes the charm mass effects to all orders in
m2
c=m2

b, but has the disadvantage of introducing poten-
tially large power corrections )"2=m2

c. For this reason
we prefer to integrate out only the large scaleQ and leave
the charm as a dynamical field in the OPE.

b s b s b s
c

(a) (b) (c)

FIG. 2. Graphs in QCD contributing to the matching onto !s#hv operators (a), !s#iD"hv (b), and !sgG"$#$hv operators (c). The
filled circle denotes the insertion of Q1–6. In (c) the wavy line is the virtual photon !' and the curly line denotes a gluon.

b s b s

c c

(a) (b)

FIG. 1. Contributions to the B! K'‘(‘" amplitude near the
zero recoil point coming from different operators in the OPE
Eq. (8). In (a) the circled cross denotes one of the operators
O!"1;0# of the form !q#iD"hv or !q#gG"$hv, and in (b) it
denotes one of the 4-quark operators ! !qhv#! !cc#. The contribu-
tions in (a) are suppressed relative to the short-distance am-
plitude by "=Q (for O!"1#), "2=Q2 (for O!0#), and those in (b)
by m4

c=Q4.
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Charmonium effects from OPE: K*
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✤ BMMP ➙ GP correction shifts BF bin ~10%.  Remaining corrections should be 
smaller (~1-5%, direction unknown) 

✤ Duality violations estimated to be small (~2% in model), Beylich, Buchalla, 
Feldmann) 

✤ (Calculation of non-local m.e. on lattice very challenging. Generalize ΔmK??)
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Narrower bins
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Conclusions

✤ Unquenched Lattice QCD calculations 0f B ➙ K* and Bs ➙ φ 
form factors (also Bs ➙K*) 

✤ Briceño, Hansen, Walker-Loud formalism for correctly treating 
K* and φ will take time to implement, but in principle this can be 
brought under control: all form factor uncertainties quantifiable 

✤ Experimental measurements for B ➙ K* µ+µ−, Bs ➙ φ µ+µ−,       
and B ➙ K µ+µ− branching fractions are low compared to present 
SM predictions (look forward to greater precision in Λb ➙ Λ µ+µ−) 

✤ Is the large-q2 OPE sufficient to account for matrix elements of 
nonlocal operators, at least in wide bins? 

✤ [B ➙ ρ still noisy even with 32K measurements.]
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Strange quark mass interpolation
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Figure 8.23: Contractions for the three-point functions with point sources.

8.8.3 Heavy-light meson three-point functions

In terms of the standard Dirac propagators, the point-source three-point function at ⇥ =

|x0 � y0|, T = |x0 � z0| is given by

CFJB(⇥, T, p, p⇥) =
⌥

y,z

e�ip�·xe�i(p�p�)·yeip·z Tr
�
�F Gq(x, y) �J Gb(y, z) �̂5 Gq�(z, x)

⇥
,

(8.72)

where �F = �̂5 for F = P and �F = �̂j for F = V . See Fig. 8.23 for a diagram showing

the contractions. In (8.72) we used the simple form of the heavy-light current J = q̄ �Jb.

When replacing the b quark propagator by the lattice mNRQCD propagator, the current

has to be replaced by the lattice current derived in Sec. 8.5. It is convenient to compute

and fit the three-point functions for the various terms in the lattice current individually.

Inserting the lattice current, the three-point function becomes

CFJB(⇥, T, k, p⇥) =
1
�

⌥

y,z

e�ip�·xe�i(k�p�)·yeik·z Tr

⇧
G†

�q
(y, x) F (x) ⇤†(y) �̂5

⇥ J

⇤
G⇥v(y, z) 0

0 0

⌅
S(⇥) �̂5 ⇤(z) G�q� (z, x)

⌃
(8.73)

(for x0 > y0 > z0). In (8.73), we have F (x) = 1 for a pseudoscalar meson in the final

state and F (x) = (�1)xj �̂j for a vector meson in the final state. The symbol J in (8.73)

denotes the gamma matrix / derivative operator content of the heavy-light current:

J ⇤
�

�S+(⇥), �S�(⇥), � (�i�̂0v + i�̂ ± iv/�) · �(±)S+(⇥)
 

. (8.74)

The three-point function (8.73) can be computed by using the spectator-quark (q⇥) prop-

agator as a source for the heavy-quark propagator, so that only the sum over y remains

Bs ! �

Bs ! K⇤

B ! K

offspring spectator

+2-4% +2-4%

+2-4%

+2-4% –8-13%

–8-13%

F (t;�y,�w) =
1

P (t)
[a0 (1 + f01�y + g01�w) + a1z]

Use results of 3-f.f. fits to include c01s in final fits:
Bs ! �

Bs ! K⇤
B ! K c01s = f01

c01s = g01

c01s = f01 + g01



Heavy quark mass tuning

✤ Heavy meson masses are 5% too large 

✤ Isgur-Wise relations (PRD42, 2388(1990)): 

!

!

!

➡ Adjust central values by 2.5% in appropriate direction 

➡ Remaining Λ/mb error is less than 1%

V,A0, T1, T23 / p
mB

A1,A12, T2 /
1

p
mB



Operator matching
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1) Ratio statistically precise due to correlations 
2) 1/mb effect comparable size to statistical error in absolute value of f.f.

[F(q2) including 1/mb currents] / [F(q2) excluding 1/mb currents]


