## THE B MESON LIGHT-CONE DISTRIBUTION AMPLITUDE

```
[ GUIDO BELL]
```

I am grateful for discussions with T. Feldmann, A. Khodjamirian, B. Lange, J. Rohrwild and C. Sachrajda

## Definition

Light-cone matrix element in HQET
with $n^{2}=0, v^{2}=1$ and $n \cdot v=1$

Gauge-link

$$
[z, 0]=\mathcal{P} \exp \left(i g_{s} \int_{0}^{1} d u z \cdot A(u z)\right)
$$

Fourier transform

$$
\phi_{B}^{+}(\omega, \mu)=\int \frac{d t}{2 \pi} e^{i \omega t} \tilde{\phi}_{B}^{+}(t, \mu)
$$

where $\omega=n \cdot k$ is a light-cone projection of the spectator quark momentum

## Motivation

Hadronic input function for exclusive energetic B decays

- QCD factorisation theorems
- QCD/SCET sum rules

Phenomenological applications often involve inverse moments

$$
\begin{aligned}
\frac{1}{\lambda_{B}(\mu)} & =\int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{+}(\omega, \mu) \\
\frac{\sigma_{n}(\mu)}{\lambda_{B}(\mu)} & =\int_{0}^{\infty} \frac{d \omega}{\omega} \ln ^{n}\left(\frac{\mu}{\omega}\right) \phi_{B}^{+}(\omega, \mu)
\end{aligned}
$$

$\Rightarrow$ essential contribution to theoretical uncertainties in QCDF calculations

## OUTLINE

PERTURBATIVE CONSTRAINTS
RENORMALISATION-GROUP EVOLUTION
OPERATOR PRODUCT EXPANSION

# NON-PERTURBATIVE DETERMINATIONS 

LATTICE QCD
QCD SUM RULES
EXTRACTION FROM DATA

## OUTLINE

## PERTURBATIVE CONSTRAINTS

RENORMALISATION-GROUP EVOLUTION<br>OPERATOR PRODUCT EXPANSION

## NON-PERTURBATIVE DETERMINATIONS

LATTICE QCD
QCD SUM RULES
EXTRACTION FROM DATA

## RG evolution

Scale dependence known to one-loop order

$$
\frac{d \phi_{B}^{+}(\omega, \mu)}{d \ln \mu}=-\left(\Gamma_{\text {cusp }} \ln \left(\frac{\mu}{\omega}\right)+\gamma_{+}\right) \phi_{B}^{+}(\omega, \mu)+\Gamma_{\text {cusp }} \int_{0}^{\infty} d \eta\left[\frac{\omega \theta(\eta-\omega)}{\eta(\eta-\omega)}+\frac{\theta(\omega-\eta)}{(\omega-\eta)}\right]_{+} \phi_{B}^{+}(\eta, \mu)
$$

- Sudakov-type evolution due to cusp between $n^{\mu}$ and $v^{\mu}$ Wilson lines

Complicated analytic solution

$$
\begin{aligned}
& \phi_{B}^{+}(\omega, \mu)=e^{v-2 \gamma_{E} g} \frac{\Gamma(2-g)}{\Gamma(g)} \int_{0}^{\infty} \frac{d \eta}{\eta} \frac{\omega_{<}}{\omega_{>}}\left(\frac{\omega_{>}}{\mu_{0}}\right)^{g}{ }_{2} F_{1}\left(1-g, 2-g ; 2 ; \frac{\omega_{<}}{\omega_{>}}\right) \phi_{B}^{+}\left(\eta, \mu_{0}\right) \\
& \text { with } \omega<=\min (\omega, \eta) \text { and } \omega>=\max (\omega, \eta)
\end{aligned}
$$

- RG kernels $V=V\left(\mu, \mu_{0}\right)$ and $g=g\left(\mu, \mu_{0}\right)$ are known to NLL
- valid for $0<g<1$ (sufficient for phenomenological applications)


## Eigenfunctions of RG kernel

Continuous set of eigenfunctions

$$
f_{\omega^{\prime}}(\omega)=\sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right) \quad \gamma_{\omega^{\prime}}=-\left(\Gamma_{\text {cusp }} \ln \left(\frac{\mu}{\hat{\omega}^{\prime}}\right)+\gamma_{+}\right)
$$

- analogue of Gegenbauer polynomials for pion LCDA

Formal representation of RG kernel

$$
\mathcal{H}=\ln \left(i \mu S_{+}\right)-\psi(1)-\frac{5}{4} \quad S_{+}=t^{2} \partial_{t}+2 j t
$$

- $j=1$ is conformal spin of light quark
- eigenfunctions: $Q_{s}(t)=-\frac{e^{i s / t}}{t^{2}} \Rightarrow \quad\left\langle e^{-i \omega t} \mid Q_{s}(t)\right\rangle=\frac{f_{1 / s}(\omega)}{s \omega}$


## Dual representation

Expansion in terms of eigenfunctions

$$
\phi_{B}^{+}(\omega, \mu)=\int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

with inverse transformation

$$
\rho_{B}^{+}\left(\omega^{\prime}, \mu\right)=\int_{0}^{\infty} \frac{d \omega}{\omega} \sqrt{\frac{\omega}{\omega^{\prime}}} J_{1}\left(2 \sqrt{\frac{\omega}{\omega^{\prime}}}\right) \phi_{B}^{+}(\omega, \mu)
$$

RG evolution of dual LCDA

$$
\frac{d \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)}{d \ln \mu}=-\left(\Gamma_{\text {cusp }} \ln \left(\frac{\mu}{\hat{\omega}^{\prime}}\right)+\gamma_{+}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

$$
\hat{\omega}^{\prime}=e^{-2 \gamma_{E} \omega^{\prime}}
$$

with simple multiplicative solution: $\rho_{B}^{+}\left(\omega^{\prime}, \mu\right)=e^{V}\left(\frac{\hat{\omega}^{\prime}}{\mu_{0}}\right)^{g} \rho_{B}^{+}\left(\omega^{\prime}, \mu_{0}\right)$

## Illustration

## Exponential model

$$
\phi_{B}^{+}\left(\omega, \mu_{0}\right)=\frac{\omega}{\omega_{0}^{2}} e^{-\omega / \omega_{0}} \quad \Longleftrightarrow \quad \rho_{B}^{+}\left(\omega^{\prime}, \mu_{0}\right)=\frac{1}{\omega^{\prime}} e^{-\omega_{0} / \omega^{\prime}}
$$



solid line: $\quad \omega_{0}=0.3 \mathrm{GeV}, \mu_{0}=1 \mathrm{GeV}$
dashed line: RG evolution with $g=0.3$ (neglecting $e^{V-2 \gamma_{E} g}$ )

## Application in QCDF

Inverse moments

$$
\int_{0}^{\infty} \frac{d \omega}{\omega} \ln ^{n}\left(\frac{\omega}{\mu}\right) \phi_{B}^{+}(\omega, \mu) \stackrel{n=0,1,2}{=} \int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \ln ^{n}\left(\frac{\hat{\omega}^{\prime}}{\mu}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

Form factor relevant for $B \rightarrow \gamma \ell \nu$ with energetic photon

$$
F\left(E_{\gamma}\right)=H\left(E_{\gamma}, \mu\right) \int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} j\left(2 E_{\gamma} \hat{\omega}^{\prime}, \mu\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

- factorisation into hard, jet and soft dynamics
- each of the ingredients has a simple multiplicative RG evolution


## Operator product expansion

Positive moments can be related to local matrix elements in HQET

$$
\int_{0}^{\infty} d \omega \omega^{n} \phi_{B}^{+}(\omega, \mu) \quad \rightarrow \quad\langle 0| \bar{q}(0) \phi \gamma_{5}(i n \cdot \overleftarrow{D})^{n} h_{v}(0)\left|\bar{B}\left(m_{B} v\right)\right\rangle
$$

- spoiled beyond tree level - positive moments are power divergent

Introduce regularised moments

$$
M_{n}\left(\Lambda_{U V}, \mu\right)=\int_{0}^{\Lambda_{U V}} d \omega \omega^{n} \phi_{B}^{+}(\omega, \mu)=\Lambda_{U V}^{n}\left\{K_{0}^{(n)}\left(\Lambda_{U V}, \mu\right)+\frac{\bar{\Lambda}}{\Lambda_{U V}} K_{1}^{(n)}\left(\Lambda_{U V}, \mu\right)+\ldots\right\}
$$

- representation in dual space

$$
M_{0}\left(\Lambda_{U V}, \mu\right)=\Lambda_{\mathrm{UV}} \int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} J_{2}\left(2 \sqrt{\frac{\Lambda_{\mathrm{UV}}}{\omega^{\prime}}}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right)
$$

## QCD-improved model-building

In dual space small and large $\omega^{\prime}$ regions are clearly separated

- $\omega^{\prime} \gg \Lambda_{Q C D}$ : implement OPE constraints to determine radiative tail
- $\omega^{\prime} \sim \Lambda_{Q C D}:$ truly NP dynamics $\rightarrow$ model (connection to QCD sum rules/Lattice?)

Large $\omega^{\prime}$ region

$$
\rho_{B}^{+}\left(\omega^{\prime}, \mu\right) \simeq C_{0}\left(\omega^{\prime}, \mu\right) \frac{1}{\omega^{\prime}}-\frac{2}{3} C_{1}\left(\omega^{\prime}, \mu\right) \frac{\bar{\Lambda}}{\left(\omega^{\prime}\right)^{2}}+\ldots
$$

- coefficients $C_{i}\left(\omega^{\prime}, \mu\right)$ can be matched to satisfy OPE constraints
- for $\omega^{\prime} \gg \mu$ use RGEs to resum large logarithms in $C_{i}\left(\omega^{\prime}, \mu\right)$
$\Rightarrow$ the whole region $\omega^{\prime} \gtrsim \mu$ is determined by perturbation theory


## Connection to NP models

Systematic procedure to construct models that satisfy OPE constraints

- start from model for $\rho_{B}^{+}\left(\omega^{\prime}, \mu_{0}\right) \rightarrow$ good description in the low $\omega^{\prime}$ region
- perform $1 / \omega^{\prime}$ expansion and adjust to perturbative result

Example: exponential model



## Inverse moments

Split perturbative ( $\omega^{\prime} \geq \mu$ ) and non-perturbative ( $\omega^{\prime} \leq \mu$ ) contributions

$$
\int_{0}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \ln ^{n}\left(\frac{\hat{\omega}^{\prime}}{\mu}\right) \rho_{B}^{+}\left(\omega^{\prime}, \mu\right) \equiv L_{n}^{+}(\mu)+L_{n}^{-}(\mu)
$$

- $L_{n}^{+}(\mu)$ completely determined perturbatively (depends on HQET parameters)
- for $L_{n}^{-}(\mu)$ substitute $z=-\ln \frac{\hat{\omega}^{\prime}}{\mu}$ and expand in Laguerre polynomials

$$
\rho_{B}^{+}\left(\hat{\mu} e^{-z}, \mu\right)=\sum_{n=0}^{\infty} a_{n}(\mu) e^{-z} L_{n}(z) \Rightarrow \begin{aligned}
& L_{0}^{-}(\mu)=a_{0}(\mu) \\
& L_{1}^{-}(\mu)=a_{1}(\mu)-a_{0}(\mu) \\
& L_{2}^{-}(\mu)=2 a_{2}(\mu)-4 a_{1}(\mu)+2 a_{0}(\mu)
\end{aligned}
$$

unfortunately the truncated expansion does not close under renormalisation

## Numerics





| $L_{n}(\mu)$ | total | $L_{n}^{-}(\mu)$ | $L_{n}^{+}(\mu)$ |
| :--- | :---: | :---: | :---: |
| $L_{0}($ model 1) | 1.67 | 1.58 | 0.086 |
| $L_{0}$ (model 2) | 1.65 | 1.57 | 0.086 |
| $L_{0}$ (model 3) | 1.21 | 1.12 | 0.086 |
| $L_{1}$ (model 1) | -3.85 | -3.93 | 0.074 |
| $L_{1}$ (model 2) | -3.46 | -3.54 | 0.074 |
| $L_{1}$ (model 3) | -2.19 | -2.27 | 0.074 |
| $L_{2}$ (model 1) | 11.6 | 11.4 | 0.121 |
| $L_{2}$ (model 2) | 9.03 | 8.91 | 0.121 |
| $L_{2}$ (model 3) | 5.44 | 5.32 | 0.121 |

$\Rightarrow$ inverse moments dominated by model-dependent contribution (independent of HQET parameters)

## OUTLINE

PERTURBATIVE CONSTRAINTS<br>RENORMALISATION-GROUP EVOLUTION<br>OPERATOR PRODUCT EXPANSION<br>\title{ NON-PERTURBATIVE DETERMINATIONS }<br>LATTICE QCD<br>QCD SUM RULES<br>EXTRACTION FROM DATA

## Lattice QCD

Simulation of LC correlators apears to be challenging

- OPE only determines HQET parameters ( $\rightarrow$ irrelevant for inverse moments)

New proposal to calculate LC correlators on the lattice

- start from quasi-LCDA defined for $z^{2}<0$

$$
\phi_{\pi}\left(u, P_{z}, \mu\right) \sim \int d z e^{i z u P_{z}}\langle 0| \bar{q}(0)[0, z] \gamma_{z} \gamma_{5} q(z)|\pi(P)\rangle
$$

- boost to equal-time correlator that can be calculated on the lattice
- for $P_{z} \rightarrow \infty$ quasi and standard LCDA are related by perturbative matching relation
$\Rightarrow$ potential to calculate B meson LCDA on the lattice?


## QCD sum rules

Start from correlation function in HQET

$$
\int d^{4} x e^{-i k(v \cdot x)}\langle 0| T\left\{\bar{q}(t n)[t n, 0] \not \Gamma_{1} h_{v}(0) \bar{h}_{v}(x) \Gamma_{2} q(x)\right\}|0\rangle \sim \frac{\tilde{f}_{B}(\mu)^{2} \tilde{\phi}_{B}^{+}(t, \mu)}{\bar{\Lambda}-k}+\ldots
$$

- for $|k| \sim$ few $\mathrm{GeV} \Rightarrow$ standard two-point sum rule including NLO corrections
- NP corrections cannot be included via local condensates

$$
\varphi_{B}^{+}(\tau, \mu)=\tilde{\phi}_{B}^{+}(-i \tau, \mu)
$$

$$
\frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} d \tau \varphi_{B}^{+}(\tau, \mu)
$$

solid line: perturbative contribution dashed line: NP contribution from $\langle\bar{q} q\rangle$ and $\langle\bar{q} \sigma g G q\rangle$


## Predictions

Model-dependent estimate of large distance NP contributions

- non-local quark condensate (partial resummation of OPE)
- other non-local condensates are neglected

Results for inverse moments:

- $\lambda_{B}(\mu=1 \mathrm{GeV})=(460 \pm 110) \mathrm{MeV}$
- $\sigma_{1}(\mu=1 \mathrm{GeV})=1.4 \pm 0.4$

Questions:

- improvements of the model-dependent estimate?
- does the dual representation of the LCDA help in this context?


## $B \rightarrow \gamma \ell \nu$

Hadronic tensor

$$
\begin{aligned}
& -i \int d^{4} x e^{i q x}\langle 0| T\left\{j_{\mathrm{em}}^{\nu}(x) \bar{u}(0) \gamma^{\mu}\left(1-\gamma_{5}\right) b(0)\right\}\left|B^{-}\left(m_{B} v\right)\right\rangle \\
& \quad=\epsilon^{\mu \nu \rho \sigma} v^{\rho} q^{\sigma} F_{V}\left(E_{\gamma}\right)-i\left(g^{\mu \nu} v \cdot q-v^{\nu} q^{\mu}\right) \tilde{F}_{A}\left(E_{\gamma}\right)+\ldots
\end{aligned}
$$

Differential decay rate

$$
\frac{d \Gamma}{d E_{\gamma}}=\frac{\alpha_{\mathrm{em}} G_{F}^{2}\left|V_{u b}\right|^{2}}{6 \pi^{2}}\left(m_{B}-2 E_{\gamma}\right) E_{\gamma}^{3}\left\{\left|F_{V}\left(E_{\gamma}\right)\right|^{2}+\left|F_{A}\left(E_{\gamma}\right)\right|^{2}\right\}
$$

For $E_{\gamma} \sim m_{B} / 2$ the form factors factorise

$$
F_{V}\left(E_{\gamma}\right)=F_{A}\left(E_{\gamma}\right)=\frac{Q_{U} m_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)
$$

- radiative corrections $R\left(E_{\gamma}, \mu\right)$ known to NLO+NLL


## Extraction of $\lambda_{B}$

Including $1 / m_{b}$ power corrections
$F_{V}\left(E_{\gamma}\right)=\frac{Q_{u} m_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\left\{\xi\left(E_{\gamma}\right)+\frac{Q_{b} m_{B} f_{B}}{2 m_{b} E_{\gamma}}+\frac{Q_{u} m_{B} f_{B}}{\left(2 E_{\gamma}\right)^{2}}\right\}$
$F_{A}\left(E_{\gamma}\right)=\frac{Q_{U} m_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\left\{\xi\left(E_{\gamma}\right)-\frac{Q_{b} m_{B} f_{B}}{2 m_{b} E_{\gamma}}-\frac{Q_{u} m_{B} f_{B}}{\left(2 E_{\gamma}\right)^{2}}+\frac{Q_{\ell} f_{B}}{E_{\gamma}}\right\}$

- soft-overlap contribution to $\xi\left(E_{\gamma}\right)$ can be
estimated using HQE and dispersion relations
( $\rightarrow$ depends on B meson LCDA) [Braun, Khodjamirian 12]

- current Babar data gives lower bound
$\lambda_{B}(\mu=1 \mathrm{GeV})>115 \mathrm{MeV}$
good prospects at Belle II



## Conclusions

Recent progress in understanding formal properties of the $B$ meson LCDA

- eigenfunctions of one-loop RG kernel
- relation to conformal symmetry
- QCD-improved model building

There still exist very few non-perturbative calculations

- any contribution will have a large impact on phenomenology

