Oliver Buchmueller & Paul De Jong DEALING WITH "SUSY LIMIT INFLATION" FOR THE EXPERIMENTAL PDG REVIEW

The Early SUSY Search Strategy

Complementary set of inclusive topology searches purely defined by experimental signature!

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Bottom line:

Use the model of SUSY as overall guidance but DO NOT tune the searches according to its details!

Inclusive SUSY Searches

Inclusive SUSY Searches

X² increase from bluish to reddish

http://mastercode.web.cern.ch/mastercode/

Experimental SUSY, PDG Worl

SUSY Status – post 7 TeV LHC data

- Constrained SUSY models like the CMSSM are severely put under pressure by the LHC limits!
- Experiments define new benchmarks and less complex SUSY models in order to present the interpretation of their searches.
- Aided by the discovery of a Higgs(-like) boson, to focus of the experimental search strategy and corresponding interpretation shifts towards "Natural SUSY".

Imperial College London

(Minimal) Natural SUSY Spectrum

Interpretation in Simplified Models

Simplified model spectrum or sms with 3 particles, 2 decay modes

χ̃1⁰

Simplified Model Spectra (SMS)

SMS: a few interesting features

How to summarize SMS limits?

Approach taken in the 2012 Experimental SUSY PDG review [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV).

Imperial College London

Today: many different SMS are considered

Today: many different searches per SMS

Today: many different searches per SMS

Interpretation in Simplified Models

Imperial College London

Experimental SUSY, PDG Workshop 2013 O. Buchmüller & P. de Jong

BACKUP

One possibility: Going back to the roots

Focus more on limits from inclusive topology searches:

i.e. complementary set of inclusive topology searches purely defined by experimental signature!

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Why?

Combination of inclusive searches

General idea:

OB, J. Marrouch arXiv:1304.2185

The combination of all relevant inclusive topology searches* should provide limits on sparticle masses that are independent on the details and complexity of the underlying SUSY spectrum/model.

Example: Natural SUSY spectra

Define (simplified) Natural-like SUSY spectra in terms of increasing complexity. Three key parameters: gluino mass, average 3G squark mass and LSP mass.

Increasing complexity

Spectra	NS0	NS1	NS2	NS3	NS4
	${egin{array}{c} { ilde g}\ { ilde t_1}, { ilde t_2} \end{array}}$	$\widetilde{g} \ \widetilde{t_1}, \widetilde{t_2}, \widetilde{b_1}$	$egin{array}{c} ilde{g} \ ilde{t_1}, ilde{t_2}, ilde{b_1} \ ilde{\chi}_0^2 \ ilde{\chi}^\pm \end{array}$	$egin{array}{c} ilde{g} \ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2} \ ilde{\chi}_0^2 \ ilde{\chi}^\pm \end{array}$	$egin{array}{c} ilde{g} \ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2} \ ilde{\chi}_0^2 \ ilde{\chi}^\pm, ilde{\ell}_{L,R} \end{array}$
sparticle content	$ ilde{\chi}^1_0$	$ ilde{\chi}_0^1$	$ ilde{\chi}^1_0$	$ ilde{\chi}_0^1$	$ ilde{\chi}^1_0$

22

Combination vs individual search

Imperial College London

Combination provides universal limits

Natural SUSY: universal limits

Combining with the latest published 8 TeV results: