

Leptoquarks

Simona Rolli US Department of Energy Office of High Energy Physics PDG Meeting, LBL June23 2013

Leptoquarks Mini Review - M. Tanabashi, S. Rolli

Outline

Current Review

- Theory Introduction
- Experimental Results
 - Direct production: HERA (new results), Tevatron (obsolete), LHC (new result)
 - Indirect production: listings?
- Plans for updated review
 - More theory info on LFV and LQ connection
 - Upcoming experiment at the Intensity Frontier
 - Remove some obsolete collider results?

Leptoquarks

- Leptoquarks (LQ) are hypothetical particles which appear in many SM extensions to explain symmetry between leptons and quarks
 - SU(5) GUT model
 - superstring-inspired models
 - 'colour' SU(4) Pati-Salam model
 - composite models
 - Technicolor
 - RPV SUSY

•LQs are **coupled to both leptons and quarks** and carry SU(3) color, fractional electric charge, baryon (B) and lepton (L) numbers

•LQ are assumed to couple to same-generation fermions (FCNC and lepton-family number violation constraints)

•LQs can have:

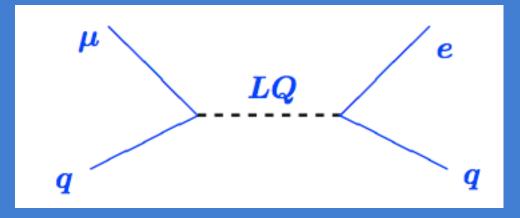
–<u>spin 0 (scalar)</u>

•couplings fixed, i.e., no free parameters

Isotropic decay

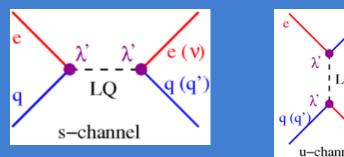
-<u>spin 1 (vector)</u>

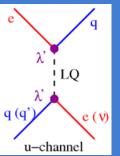
•anomalous magnetic (k_G) and electric quadrupole (λ_{θ}) modeldependent couplings

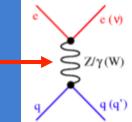

-Yang-Mills coupling: $k_G = \lambda_{\theta} = 0$ -Minimal coupling: $K_G = 1, \lambda_{\theta} = 0$ -Decay amplitude proportional to $(1 + \cos\theta^*)^2$

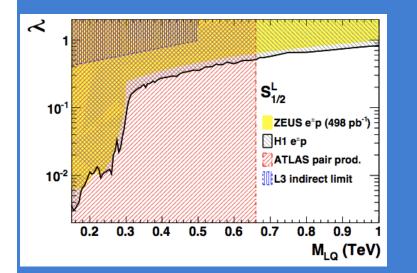
Experimental evidence searched:

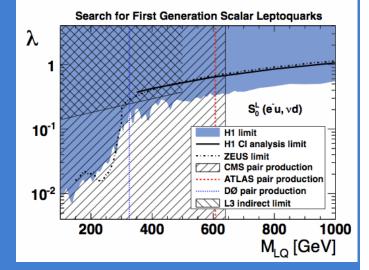
- indirectly: LQ-induced 4fermion interactions; rare processes; LVF experiments
- directly: production cross sections at collider experiments


Renewed interest on LFV LQ-induced processes


- The origin of quark and lepton masses (arising from physics at some high scale) is likely to induce flavor processes involving mesons, muons, ...
- Leptoquarks which couple to both eq and μq induce $\mu N \rightarrow eN$ conversion:


LQ at HERA: 1st generation

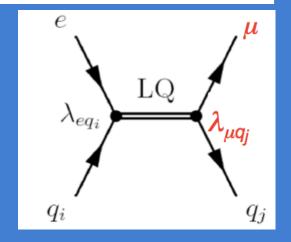


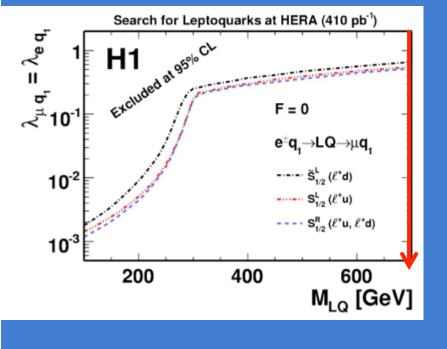

Search for a resonant structure in the LQ mass distribution

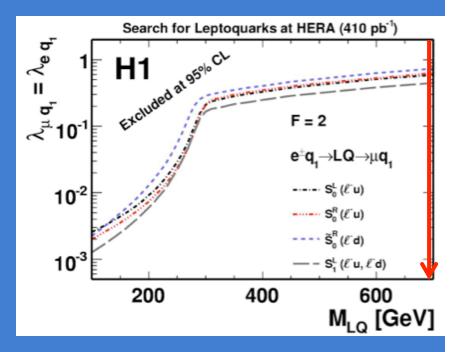
Spectra dominated by SM DIS No excess observed

Cross-section is dependent on the Leptoquarks Yukawa coupling λ -mass exclusion plots

R-parity violating SUSY u-type squark, decaying into ed

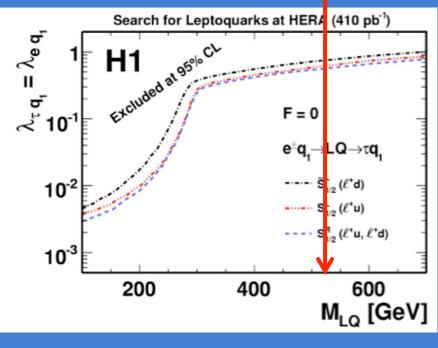

R-parity violating SUSY d-type squark, decaying into eu, dv

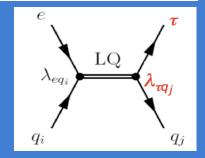

6/19/13


Leptoquarks at HERA: LFV

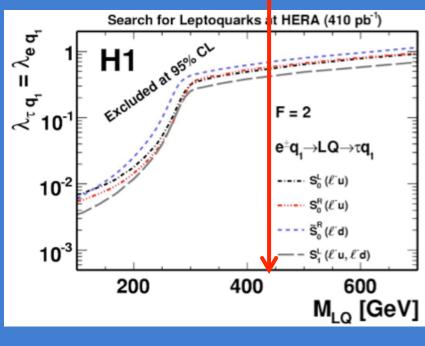
Lepton flavor violating LQ
Study of the LQ decay to μ-jet and τ-jet

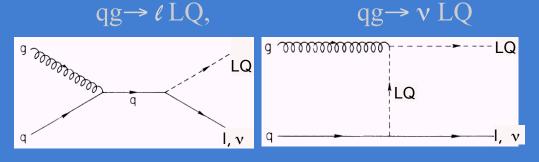
CMS Limit on β =1 1070 GeV; β =0.5 785 (8 TeV data)





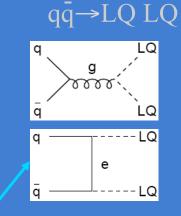
Leptoquarks at HERA: LFV

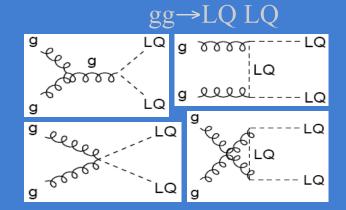

Lepton flavor violating LQ
Study of the LQ decay to τ-jet


CMS Limit on β =0.5 450

LQ at Hadron Colliders: Production

Single production

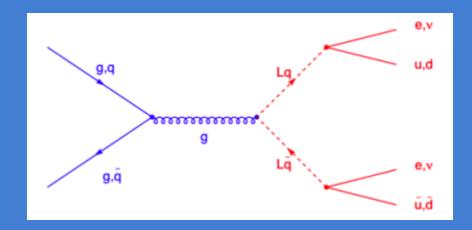

- strongly depends on λ
- possible signatures:
 - I*I + jet
 - Iv + jet
 - v v + jet
- Main background: Zjet & tt



Generally negligible for m(LQ) < 1 TeV

Pair production

- Practically independent of Yukawa coupling λ (only g-LQ-LQ vertex)
- Depends mainly on LQ mass



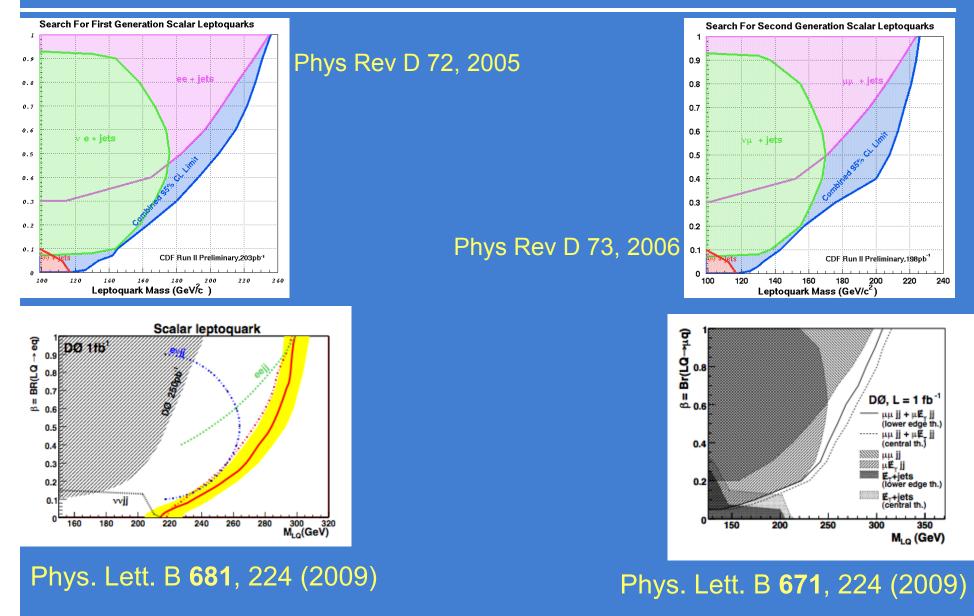
$\square \lambda$ dependent process

• does not contribute significantly to 2nd & 3rd generation

LQ at Hadron Colliders: Decay

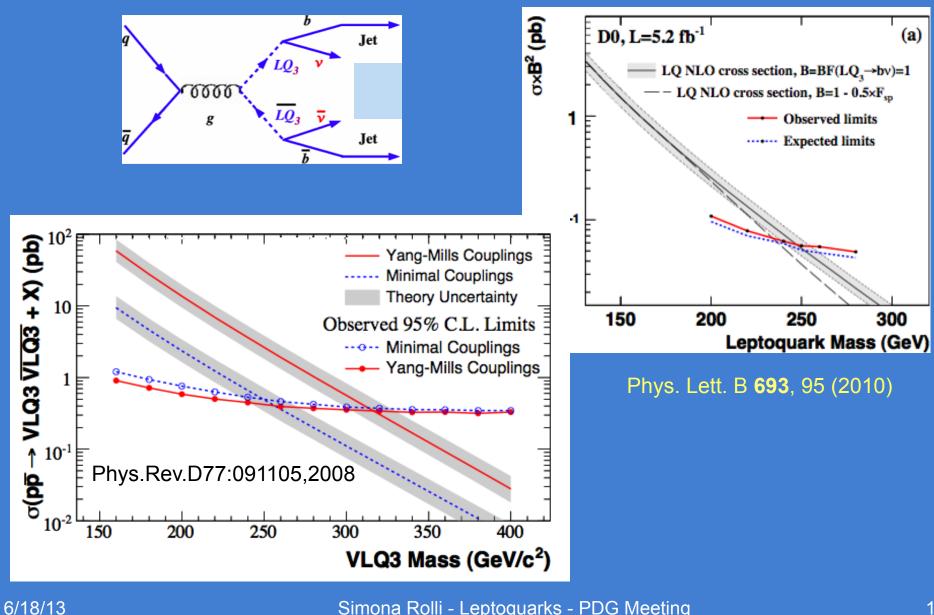
Decay

Each generation can decay into 3 final states: $\beta = Br (LQ \rightarrow Iq)$ $\beta = 1$

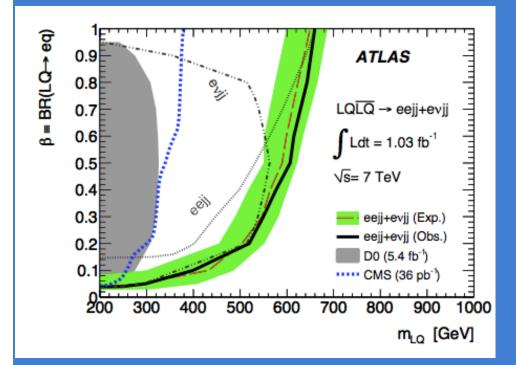

β = 0.5

 $\beta = \mathbf{0}$

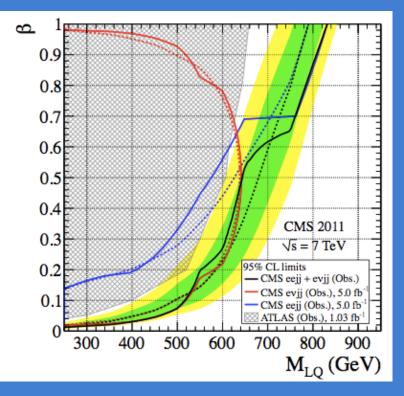
Exclusive to hadron colliders

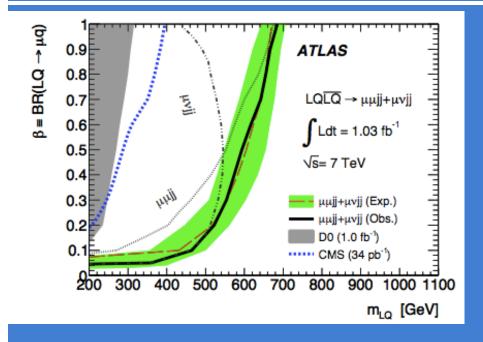

1 st Generation	2 nd Generation	3 rd Generation
LQ LQ→e⁻e⁺ qq	LQ <u>LQ</u> →µ⁺µ⁻q q	LQ LQ→τ⁺τ⁻qq
$LQ \overline{LQ} \rightarrow e^{\pm} v_e^{} q_i^{} q_j^{}$	$LQ \ \overline{LQ} \rightarrow \mu^{\pm} \nu_{\mu} q_{i} q_{j}$	$LQ \ \overline{LQ} \rightarrow \tau^{\pm} \nu \ q_i q_j$
$LQ \overline{LQ} \rightarrow v_e v_e q \overline{q}$	$LQ \ \overline{LQ} \rightarrow \nu_{\mu} \nu_{\mu} q \overline{q}$	$LQ \overline{LQ} \rightarrow v_{\tau} v_{\tau} q \overline{q}$

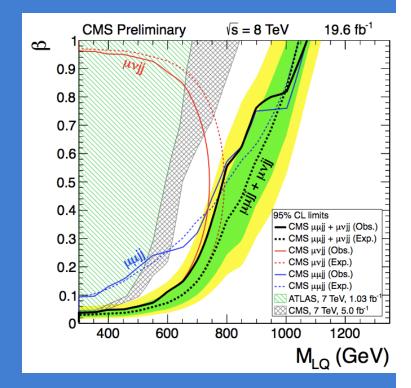
LQ at the Tevatron



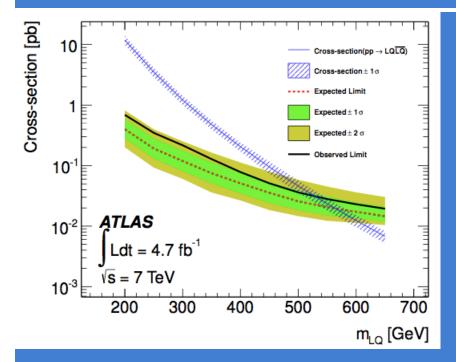
6/18/13


LQ at the Tevatron: 3rd Gen


LHC Results (7 TeV run): 1st Gen


CMS M(LQ) > 830 GeV/c² (β =1) M(LQ) > 640 GeV/c² (β =05) -mini-review update! ATLAS M(LQ) > 660 GeV/c² (β =1) M(LQ) > 607 GeV/c² (β =05) Already in mini-review

LHC Results (7/8 TeV run): 2nd Gen



CMS (8 TeV) M(LQ) > 1070 GeV/c² (β =1) M(LQ) > 785 GeV/c² (β =05) -mini-review update! ATLAS (7 TeV) M(LQ) > 685 GeV/c² (β =1) M(LQ) > 594 GeV/c² (β =0.5) Update in mini-review !

6/18/13

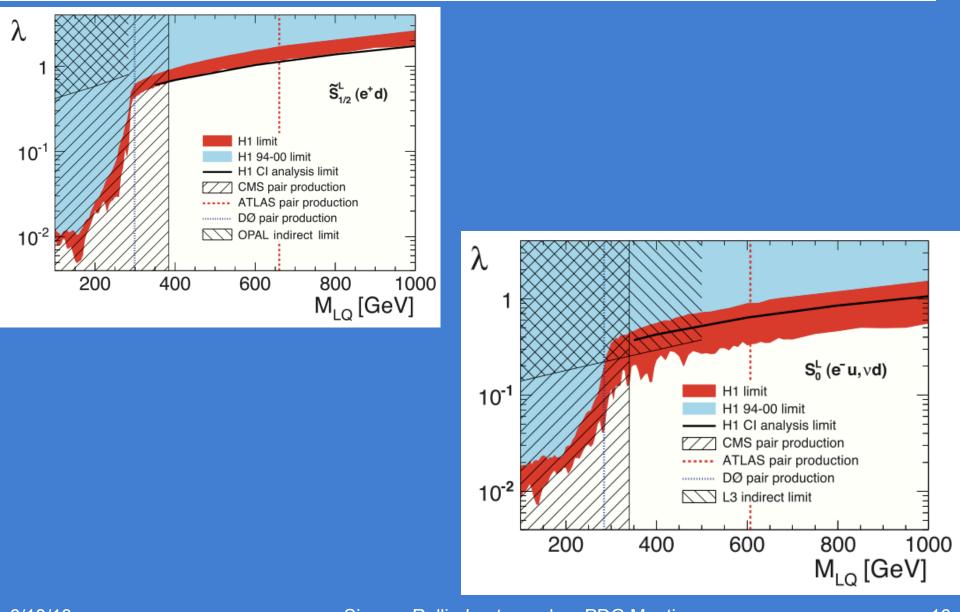
LHC Results: 3rd Generation

CMS (7 TeV) M(LQ) > 525 GeV/c² (β =1) M(LQ) > 450 GeV/c² (β =05) -mini-review update! ATLAS (7 TeV) M(LQ) > 534 GeV/c² (β=1) Update in mini-review !

Conclusions and Plans

LQ are interesting and a sensible choice for new physics particles;

However, so far there is no sign of BSM physics at colliders; The strongest evidence for BSM physics comes from the neutrino sector and the cosmic frontier (DM and DE) The neutrino sector is pointing to some form of LFV, which is getting renewed experimental attention at the Intensity Frontier, where much higher scales could be probed;


The PDG LQ mini-review has dutifully reported on HERA, Tevatron and LHC increasing limits

most stringent up-to-date limits (will make another yearly revision for the 2013 printed version); should remove Tevatron results? not much on LFV so far – new HERA results and new theoretical hypotheses driven by renewed experimental efforts at the Intensity Frontier (Mu2E conversion, neutrino sector etc) – plans to expand on this

Rare decays constraints (encoded in the listing)

Current PDG Summary

6/18/13

Backup

TABLE 1 Leptoquark classification according to electroweak quantum numbers					
Туре	Q	Coupling	β	F	
S_0^L	-1/3	$\lambda_L(e_L u), -\lambda_L(v_e d)$	1/2	2	
S_0^R	-1/3	$\lambda_R(e_R u)$	1	2	
\tilde{S}_0^R	-4/3	$\lambda_R(e_R d)$	1	2	
S_1^L	-4/3	$-\sqrt{2\lambda_L}(e_L d)$	1	2	
	-1/3	$-\lambda_L(e_L u), -\lambda_L(v_e d)$	1/2	2	
	+2/3	$\sqrt{2}\lambda_L(v_e u)$	0	2	
$V_{1/2}^{L}$	-4/3	$\lambda_L(e_L d)$	1	2	
	-1/3	$\lambda_L(v_e d)$	0	2	
$V_{1/2}^{R}$	-4/3	$\lambda_R(e_R d)$	1	2	
	-1/3	$\lambda_R(e_R u)$	1	2	
$\tilde{V}_{1/2}^{L}$	-1/3	$\lambda_L(e_L u)$	1	2	
-,-	+2/3	$\lambda_L(v_e u)$	0	2	
$S_{1/2}^{L}$	-5/3	$\lambda_L(e_L \bar{u})$	1	0	
	-2/3	$\lambda_L(v_e \bar{u})$	0	0	
$S_{1/2}^{R}$	-5/3	$\lambda_R(e_R\bar{u})$	1	0	
	-2/3	$-\lambda_R(e_R \vec{d})$	1	0	
$\tilde{S}_{1/2}^{L}$	-2/3	$\lambda_L(e_L\bar{d})$	1	0	
	+1/3	$\lambda_L(v_e \bar{d})$	0	0	
V_0^L	-2/3	$\lambda_L(e_L \bar{d}), \lambda_L(v_e \bar{u})$	1/2	0	
V_0^R	-2/3	$\lambda_R(e_R\bar{d})$	1	0	
\tilde{V}_0^R	-5/3	$\lambda_R(e_R\bar{u})$	1	0	
V_1^L	-5/3	$\sqrt{2}\lambda_L(e_L\bar{u})$	1	0	
	-2/3	$-\lambda_L(e_L\bar{d}), \lambda_L(v_e\bar{u})$	1/2	0	
	+1/3	$\sqrt{2\lambda_L}(v_e\bar{d})$	0	0	

Leptoquarks classification (Buchmuller-Ruckl-Wyler)

F = L + 3B $\beta = Br (LQ \rightarrow Iq)$ V/S: vector or scalar Subscript : weak isospin Superscript: coupling to left-handed or right-handed fermions At the Tevatron/LHC LQ production does not depend explicitly on EW quantum numbers