Jet production and substructure in SHERPA

Marek Schönherr

Institute for Particle Physics Phenomenology

Glasgow, 15/10/2013

LHCphenOnet

MCnet

Jet production and substructure in SHERPA

Contents

1 Status of SHERPA

- **2** Recent developments
- **3** Jet properties
- 4 Conclusions

Marek Schönherr

Jet production and substructure in SHERPA

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event MEPs (CKKW), Mc@NLO, MENLOPS, MEPS@NLO

 \rightarrow full analytic control mandatory for consistency/accuracy

Parton showers

resummation of (soft-)collinear limit \rightarrow intrajet evolution

• matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space

- MEPS combines multiple LOPS keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NL0 combines multiple NLOPS keeping either accuracy

4

Matrix elements

fixed-order in α_s

- \rightarrow hard wide-angle emissions
- \rightarrow interference terms

• matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space

- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

MEPs (CKKW,MLM)

Catani, Krauss, Kuhn, Webber JHEP11(2001)063 Lönnblad JHEP05(2002)046 Höche, Krauss, Schumann, Siegert JHEP05(2009)053 Hamilton, Richardson, Tully JHEP11(2009)038

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NL0 combines multiple NLOPS keeping either accuracy

NLOPS (MC@NLO, POWHEG)

Frixione, Webber JHEP06(2002)029 Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070 Höche, Krauss, MS, Siegert JHEP09(2012)049

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPS combines multiple LOPS keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

Marek Schönherr

Recent results

Fixed-mulitplicity NLOPS (MC@NLO)

• $pp \rightarrow W + 0, 1, 2, 3 \text{jets} - \text{Sherpa+BlackHat}$

Höche, Krauss, MS, Siegert Phys.Rev.Lett.110(2013)052001

• $pp \rightarrow \text{jets} - \text{Sherpa} + \text{BlackHat}$

Höche, MS Phys.Rev.D86(2012)094042

• $pp \rightarrow t\bar{t}b\bar{b}$ – Sherpa+OpenLoops

Cascioli, Maierhöfer, Moretti, Pozzorini, Siegert arXiv:1309.0500

Multijet merging at NLO accuracy (MEPS@NLO)

- $pp \rightarrow W + jets SHERPA + BLACKHAT$ Höche, Krauss, MS, Siegert JHEP04(2013)027
- $e^+e^- \rightarrow \text{jets} \text{Sherpa} + \text{BlackHat}$

Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

- $pp \rightarrow h + jets SHERPA + GOSAM$ Höche, Krauss, MS, Siegert, in YR3 arXiv:1307.1347
- $p\bar{p} \rightarrow t\bar{t} + jets Sherpa+GoSam$

Höche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)014040

• $pp \rightarrow 4\ell + jets - Sherpa+OpenLoops$

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, Siegert arXiv:1309.5912

Recent results – $pp \rightarrow \mathbf{W} + \mathbf{n}$ jets MC@NLO

Höche, Krauss, MS, Siegert Phys.Rev.Lett.110(2013)052001

 $pp \to W+1,2,3 \; {\rm jets}$

- 3 separate samples/calculations
- NLO accuracy for inclusive observables of respective jet multiplicity
- resummation of softest/LO jet, i.e. 4th jet in $pp \rightarrow W + 3$ jets
- no resummation of sample-defining jet multiplicity, i.e. first 3 jets in $pp \rightarrow W+3$ jets

scales:

$$\mu_{R/F} = \frac{1}{2} \hat{H}'_T, \ \mu_Q = p_\perp(j_n)$$

ATLAS data Phys.Rev.D85(2012)092002

Recent results – $pp \rightarrow W + jets MePs@NLO$

 $pp \rightarrow W {+} {\rm jets}$ (0,1,2 @ NLO; 3,4 @ LO)

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{\mathrm{def}}$ scale uncertainty much reduced
- NLO dependece for $pp \rightarrow W+0,1,2$ jets LO dependence for $pp \rightarrow W+3,4$ jets

•
$$Q_{\mathsf{cut}} = 30 \; \mathsf{GeV}$$

good data description

ATLAS data Phys.Rev.D85(2012)092002

Recent results – $\mathbf{pp} \rightarrow \mathbf{W} + \textbf{jets}~\textbf{MEPs@NLO}$

Marek Schönherr

Recent results – $pp \rightarrow \text{jets}$ MC@NLO

MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_\perp$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation, MPI
- virtual MEs from BLACKHAT Giele, Glover, Kosower Nucl.Phys.B403(1993)633-670

Bern et.al. arXiv:1112.3940

• $p_{\perp}^{j_1}>20~{\rm GeV},~p_{\perp}^{j_2}>10~{\rm GeV}$

Uncertainty estimates:

- $\bullet \ \mu_{R/F} \in [\tfrac{1}{2},2] \, \mu_{R/F}^{\mathsf{def}}$
- $\bullet \ \mu_Q \in [\tfrac{1}{\sqrt{2}}, \sqrt{2}] \, \mu_Q^{\mathsf{def}}$
- MPI activity in tr. region $\pm~10\%$

Höche, MS Phys.Rev.D86(2012)094042

Recent results – $\mathrm{pp} \rightarrow t \bar{t} + \mathsf{jets}$ MEPs@NLO

- Definition of forward-backward asymmetry of an observable $\ensuremath{\mathcal{O}}$

$$A_{\mathsf{FB}}(\mathcal{O}) = \frac{\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y>0}} - \frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y<0}}}{\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y>0}} + \frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y<0}}}$$

- A_{FB} is ratio of expectation values
 - \rightarrow conventional scale variations by factor 2 will largely cancel for uncertainty on $A_{\rm FB}$
- \Rightarrow use different functional forms of the scale defintion that behave differently in $\Delta y>0$ and $\Delta y<0$ for a realistic estimate of uncertainty
 - applies to other ratio observables, e.g. normalised observables, as well

Recent results – $\mathrm{pp} \rightarrow t \bar{t} + jets$ MEPs@NLO

Setup: $p\bar{p} \rightarrow t\bar{t}+$ jets

- purely perturbative calculation (no hadronisation, MPI, etc.)
- 0,1 jets @ NLO $Q_{cut} = 7 \text{ GeV}$
- perturbative scale variations $\begin{array}{l} \mu_{R/F} \in [\frac{1}{2},2] \ \mu_{def} \\ \mu_Q \in [\frac{1}{\sqrt{2}},\sqrt{2}] \ \mu_{core} \end{array}$
- variation of merging parameter $Q_{\rm cut} \in \{5,7,10\}~{\rm GeV}$
- scale choices: $\alpha_s^{k+n}(\mu_{\text{eff}}) = \alpha_s^k(\mu) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$
 - 1) $\mu_{\text{core}} = m_{t\bar{t}}$
 - ?) $\mu_{ ext{core}}=\mu_{ ext{QCD}}=2\left|p_ip_i
 ight|$
 - $\dots N_c o \infty$ colour partners, chooses between s,t,u
- \Rightarrow different behaviour for forward/backward configurations

Höche, Huang, Luisoni, MS, Winter arXiv:1306.2703

Marek Schönhern

Recent results – $\mathrm{pp} \rightarrow t \bar{t} + jets$ MEPs@NLO

Setup: $p\bar{p} \rightarrow t\bar{t}+$ jets

- purely perturbative calculation (no hadronisation, MPI, etc.)
- 0,1 jets @ NLO $Q_{cut} = 7 \text{ GeV}$
- perturbative scale variations $\begin{array}{l} \mu_{R/F} \in [\frac{1}{2},2] \ \mu_{def} \\ \mu_Q \in [\frac{1}{\sqrt{2}},\sqrt{2}] \ \mu_{core} \end{array}$
- variation of merging parameter $Q_{\rm cut} \in \{5,7,10\}~{\rm GeV}$
- scale choices: $\alpha_s^{k+n}(\mu_{\rm eff}) = \alpha_s^k(\mu) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$
 - 2) $\mu_{\text{core}} = \mu_{\text{QCD}} = 2 |p_i p_j|$ $i, j \dots N_c \to \infty$ colour partners, chooses between s, t, u

ightarrow = m different behaviour for forward/backward configurations

Marek Schönherr

Recent results – $\mathrm{pp} \rightarrow t \bar{t} + jets$ MEPs@NLO

Setup: $p\bar{p} \rightarrow t\bar{t}+$ jets

- purely perturbative calculation (no hadronisation, MPI, etc.)
- 0,1 jets @ NLO $Q_{cut} = 7 \text{ GeV}$
- perturbative scale variations $\begin{array}{l} \mu_{R/F} \in [\frac{1}{2},2] \ \mu_{def} \\ \mu_Q \in [\frac{1}{\sqrt{2}},\sqrt{2}] \ \mu_{core} \end{array}$
- variation of merging parameter $Q_{\rm cut} \in \{5,7,10\}~{\rm GeV}$
- scale choices: $\alpha_s^{k+n}(\mu_{\text{eff}}) = \alpha_s^k(\mu) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$

Marek Schönhern

Jet production and substructure in SHERPA

Höche, Huang, Luisoni, MS, Winter arXiv:1306.2703

Recent results – $\mathrm{pp} \rightarrow \mathrm{t} \bar{\mathrm{t}} + \mathsf{jets}$ MEPs@NLO

Setup: $p\bar{p} \rightarrow t\bar{t}+$ jets

- purely perturbative calculation (no hadronisation, MPI, etc.)
- 0,1 jets @ NLO $Q_{cut} = 7 \text{ GeV}$
- perturbative scale variations $\begin{array}{l} \mu_{R/F} \in [\frac{1}{2},2] \ \mu_{def} \\ \mu_Q \in [\frac{1}{\sqrt{2}},\sqrt{2}] \ \mu_{core} \end{array}$
- variation of merging parameter $Q_{\rm cut} \in \{5,7,10\}~{\rm GeV}$
- scale choices: $\alpha_s^{k+n}(\mu_{\rm eff}) = \alpha_s^k(\mu) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$

1)
$$\mu_{core} = m_{t\bar{t}}$$

2) $\mu_{core} = \mu_{QCD} = 2 |p_i p_j|$
 $i, j \dots N_c \to \infty$ colour partners, chooses between s, t, u
 \Rightarrow different behaviour for forward/backward configurations

Marek Schönherr

Jet production and substructure in SHERPA

Höche, Huang, Luisoni, MS, Winter arXiv:1306.2703

Recent results – $\mathbf{p}\mathbf{p} \to t\bar{t}\,b\bar{b}$ MC@NLO

Cascioli, Maierhöfer, Moretti, Pozzorini, Siegert arXiv:1309.0500

MC@NLO $pp \rightarrow t\bar{t} b\bar{b}$ production:

- 4F scheme, finite m_b , m_t
- $\mu_R = \sqrt[4]{\prod_{i=t,\bar{t},b,\bar{b}} E_{\perp,i}}$
- $\mu_F = \frac{1}{2} \left(E_{\perp,t} + E_{\perp,\bar{t}} \right)$
- $\mu_Q = \mu_F$
- MSTW2008NLO PDF
- parton level calculation
- virtual MEs from OPENLOOPS

Uncertainty estimates:

- $\mu_{R/F} \in [\frac{1}{2},2]\,\mu_{R/F}^{\mathsf{def}}$
- $\mu_Q \in \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right] \mu_Q^{\mathsf{def}}$

Recent results – $\mathbf{pp} \rightarrow \mathbf{h} + \mathsf{jets}$ MEPS@NLO

$pp \rightarrow h {+} {\rm jets}$ (0,1,2 @ NLO; 3 @ LO)

- $\mu_{R/F} \in [\frac{1}{2}, 2] \mu_{def}$ $\mu_Q \in [\frac{1}{\sqrt{2}}, \sqrt{2}] \mu_{def}$ $\mu_{core} = m_h$
- NLO dependence for $pp \rightarrow h+0,1,2$ jets LO dependence for $pp \rightarrow h+3$ jets

•
$$Q_{\text{cut}} = 20 \text{ GeV}$$

Höche, Krauss, MS, Siegert in preparation

Jet properties

Jet production comprises contributions from all energy regimes:

- perturbative contributions
 - hard seed parton(s) \rightarrow fixed order matrix elements
 - soft & collinear emissions (parton shower w/ colour coherence)
- non-perturbative contributions
 - (uncorrelated) contributions from additional partonic interactions
 - hadronisation and hadron decays

⇒ small scale contributions especially important for intrajet observables

- necessity to describe intrajet observables well to be useful in jet substructure analysis
- need to describe hard emissions well
 - recoil to produce boosted heavy particles (production xsecs/dists)
 - good chance they will end up in same fat jet $(Q_{\mathsf{cut}} | \mathsf{usally} | k_{\perp} \mathsf{-type})$
- ⇒ multijet merging necessary

Jet properties

Jet production comprises contributions from all energy regimes:

- perturbative contributions
 - hard seed parton(s) \rightarrow fixed order matrix elements
 - soft & collinear emissions (parton shower w/ colour coherence)
- non-perturbative contributions
 - (uncorrelated) contributions from additional partonic interactions
 - hadronisation and hadron decays

⇒ small scale contributions especially important for intrajet observables

- necessity to describe intrajet observables well to be useful in jet substructure analysis
- · need to describe hard emissions well
 - recoil to produce boosted heavy particles (production xsecs/dists)
 - good chance they will end up in same fat jet (Q_{cut} usally k_{\perp} -type)

⇒ multijet merging necessary

Jet shapes – differential jet shape $\rho(\mathbf{r})$

ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

Marek Schönherr

Jet production and substructure in SHERPA

IPPP Durham

Jet shapes – differential jet shape $\rho(\mathbf{r})$

ATLAS data Phys.Rev.D83(2011)052003

Marek Schönher

Jet shapes – differential jet shape $\rho(\mathbf{r})$

ATLAS data Phys.Rev.D83(2011)052003

Marek Schönherr

Jet shapes – integrated jet shape $1 - \Psi(\mathbf{r} = \mathbf{0.3})$

ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

IPPP Durham

Jet production and substructure in SHERPA

Marek Schönher

Jet shapes – integrated jet shape $1 - \Psi(\mathbf{r} = \mathbf{0.3})$

ATLAS collaboration Phys.Rev.D83(2011)052003, ATL-PHYS-PUB-2011-010

Marek Schönherr

Jet production and substructure in SHERPA

Jet shapes – integrated jet shape $\Psi(\mathbf{r})$

ATLAS data Phys.Rev.D83(2011)052003

Marek Schönher

Jet shapes – integrated jet shape $\Psi(\mathbf{r})$

ATLAS data Phys.Rev.D83(2011)052003

Jet substructure

BOOST2012 to be published

 $pp \rightarrow t\bar{t} + {\rm jets}$ production

- NLO accuracy (Mc@NLO, MEPS@NLO) of signal and background processes possible in SHERPA
- Hadronisation and Underlying Event contributions tuned

Matrix element weights and reweighting

SHERPA-2.0.0 will contain an Python interface (available since SHERPA-2.0. β_2)

- gives access to SHERPA's matrix elements (AMEGIC++ & COMIX)
- takes external four momenta and flavours
- returns colour and helicity summed/averaged matrix elements including symmetry and flux factors
- $\Rightarrow\,$ can be used to calculate the ME weight for a given configuration
 - matrix element method (tree-level) can be used for any process
 - reweight BSM sample to different BSM parameter points

Conclusions

- MC@NLO including exact soft-gluon colour coherence
- multijet merging at NLO accuracy (MEPS@NLO)
 → preserves NLO accuracy at every jet multiplicity and all resummation properties of the parton shower
- jet shapes well modelled
- multijet topologies relevant in boosted regime \rightarrow multijet merging needed
- tools for ME-reweighting provided

imminent release SHERPA-2.0.0

http://sherpa.hepforge.org

Thank you for your attention!

Marek Schönherr Jet production and substructure in SHERPA **IPPP Durham**