

Simulated cleaning for HL-LHC layouts with errors

A. Marsili, R. Bruce, L. Lari, S. Redaelli

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Introduction

- Collimation cleaning simulations of ATS Beam 1
- Loss clusters downstream IR7
- Can be cured by 11 T dipoles + TCLD collimators
- Add error models of collimator alignment to simulations.
- See if TCLD still cure peaks around the ring (already the case without errors)

LHC Collimation Project

Outline

- Presentation of DS collimator layout
- Presentation of the different error models
 - Independent effects on simulations
- Combined error models
 - Global effects of TCRYO (TCLD)
 - Statistics

- Non-flatness
- Local effect of TCRYO in IR7
 - Loss clusters
- Conclusion

Dispersion Suppressor Collimators (R. Bruce)

- IR7 dispersion suppressor (DS) is the limiting location in terms of collimation cleaning inefficiency
 - Dominating losses from protons that have undergone single diffractive scattering in TCP.
 - Energy offset large enough to hit the aperture in the arc, with high dispersion, but not large enough delta and betatron amplitude to hit the other collimators
- In the experimental IRs, off-momentum collisional debris lost in the DS. Maybe less critical (for protons – may still be needed for ions!) – considering presently only IR7 DS
- In both cases, the installation of additional collimators in the DS, TCLD, after the point where the dispersion is rising, could intercept these losses
- IR7 DS collimators are also beneficial for ions

Dispersion Suppressor Collimators (R. Bruce)

- Most promising layout option
 - replace an existing main dipole with two short 11T dipoles
 - Warm collimator installed in between the magnets
 - See talks V. Parma, A. Bertarelli in 2013 collimation review
- Considering a magnetic length of 5.5m (M. Karpinen) and an active collimator length of up to 1m

Error models in simulation

- Experimental data from C. Bracco's thesis
 - Will be updated by new data
- Gap: error on the size of the collimator gap
 - Standard deviation: 0.1σ

- Offset: error on the position of the beam centre
 - Standard deviation: 50 μm
- Tilt: error on the angle between jaw and beam
 - Standard deviation: 200 μ rad
- Random distributions of errors controlled by a seed
- Slices: error on the flatness of the jaw (not random)
 - 2nd order polynomial: $4 \cdot 10^{-4} (\frac{s^2}{l} s)$
 - $\frac{1}{10}$ fitted linearly by 4 slices

Example: impacts on the left jaw of the TCP

• Shape of the jaw is clearly visible

7

- With error on gap and offset, jaws not at 6 σ any more
- Distribution of losses in the collimator volume vary significantly
- Mismatch halo/primary decreases statistics
- Single seed is not meaningful

 $\xrightarrow[High]{High}$ need systematic analysis based on appropriate statistics to identify real trends the trends t

Example: effect of the error on flatness

- Error on flatness (slices) decreases efficiency
- Error on slice has no random component (does not depend on a seed)

8

High Lumir

Realistic error models for LHC collimators

Global effect

9

TCRYO & other collimators

	$0 \pm CDVO$, and a set of $1 \leq -$	Type	Setting	
•	2 ICRYO: open, or set at 15 σ	TCP IR7	6	
•	Worst case situation, to compare with	TCSG IR7	7	
	the no-error case (10 and 15 σ)	TCLA IR7	10	
•	Reality should be in between two cases	TCP IR3	12	
_		TCSG IR3	15.6	
•	Simulations: 100 cm jaws	TCLA IR3	17.6	
	- current model is 80 cm	TCL	10	
	- both values give similar cleaning (FLUKA)	TCSTCDQ	7.5	
•	Global inefficiency strongly dependent	TCDQ	8	
	on the presence of the TCRYO	TCT $IR1/5$	8.3	
	1.	TCT $IR2/8$	12.0	

Combined error models

- All considered errors at the same time
- Error on flatness:
 - Mostly deformed towards the beam (2/3)
 - Both cases simulated
 - Average absolute flatness: 40.3 \pm 22.2 $\mu\mathrm{m}$
 - Modelled as parabola with maximum:
 10 ppm (worst case scenario)
- Several seeds for the random errors
- Example shows non-flatness + tilt

Loss maps IR7, no TCRYO with and without errors

Global inefficiency: 3.225e-4 Loss clusters under 1e-5

s [m]

20200

20000

No errors

Global inefficiency: 7.624e-4

Loss clusters above 1e-5

Cleaning deteriorates with error models

A. Marsili, Daresbury Annual Meeting, 13/11/2013

20400

20600

10

104

 10^{1}

 10^{0}

10

 10^{-2}

 10^{-3} 10^{-4}

10⁻⁵ 10⁻⁶

10

19600

19800

 η [m⁻¹]

Statistics

• Ratio particles lost / particles tracked

	Hor, no TCRYO	Ver, no TCRYO	Hor, TCRYO	Ver, TCRYO
Mean	6.756e-4	5.086e-4	1.753e-5	1.441e-5
Std. Dev.	1.659e-4	1.065e-4	1.144e-5	4.497e-6
Error	6.27e-5	4.025e-5	4.326e-6	1.7e-6

• Global inefficiency

	Hor, no TCRYO	Ver, no TCRYO	Hor, TCRYO	Ver, TCRYO
Mean	6.756e-4	5.086e-4	1.753e-5	1.441e-5
Std. Dev.	1.659e-4	1.065e-4	1.144e-5	4.497e-6
Error	6.27e-5	4.025e-5	4.326e-6	1.7e-6

Considerations on statistics

- In some cases, alignment errors \Leftrightarrow mismatch halo/collimator
 - \Leftrightarrow different collimator setting
 - \Rightarrow decrease of the statistics

Loss maps for four cases (same seed)

A. Marsili, Daresbury Annual Meeting, 13/11/2013

Observations on non-flatness

- 2^{nd} order polynomial, two options: towards the beam, or away.
- Half of simulations in one case, half in the other
- Same maximum deformation
- On average, the deformation towards the beam provides a better cleaning efficiency (more material than other case)

Local effect of the TCRYO (TCLD) on loss clusters

17

Effect of the TCRYO (both cases with error models, one seed)

A. Marsili, Daresbury Annual Meeting, 13/11/2013

Losses in the arcs (other seed)

A. Marsili, Daresbury Annual Meeting, 13/11/2013

Loss clusters: names

Effect of the TCRYO for each cluster

- With TCRYO, most clusters disappear: local inefficiency is less than 1/6.4e-6
- Min. ratio corresponding to the improvement in local inefficiency (first 3 clusters):

Gain H	53.01	988.44	339.413
Gain V	91.6	732.71	546.2

Conclusions

- Cleaning performance with and without DS collimation was studied for different error models together
- Error models deteriorate cleaning efficiency
- Worst case situation: considered errors + setting at 15 σ
- Even in worst case, global efficiency improves by factor 30 to 45
- The efficiency estimated from the number of protons hitting the cold aperture downstream IR7 improved by a factor x100 (cf A. Lechner's presentation on energy deposition, earlier)
- Catching off-momentum leakage close to IR7 make the overall losses around the ring less sensitive to machine imperfections

310 000 jobs, 2e12 particles, 800 years of CPU

Thank you !

cern.ch

Spare slides

Example: impacts on the left jaw of the TCP $\textcircled{\bullet}$ Setting: 6 σ

A. Marsili, Daresbury Annual Meeting, 13/11/2013

Impacts on the TCP (vertical plane)

Distributions of losses per turn

First impacts on TCP.C6L7.B1

High Lumir LHC

A. Marsili, Daresbury Annual Meeting, 13/11/2013

Loss maps of IR7

Statistics

- Error on gap = bigger collimator setting
- Offset = favouring one jaw
- Slices and tilt have similar effect: less material

- Offset gives best cleaning
- Tilt gives worst cleaning
- Slices = higher order of tilt (better cleaning)

Statistics

Gap

Offset

- Tracked: 6 400 000 • Tracked: 6 400 000
- $3\ 947\ 114\ (61.67\ \%)$ Lost: $6\ 150\ 481\ (96.10\ \%)$ Lost:

Slices

Tilt

- Tracked: 6 329 600 Tracked: 6 393 600
- 5 640 978 (88.23 %) Lost: 5 727 363 (90.48 %) Lost:

No error, Horizontal B1 (for reference)

Result example: B1 horizontal, no TCRYO

All results ratio lost/sent

Horizontal

- B1H TCRYO 1 0.948362313675
- B1H TCRYO 28 0.387117461746
- B1H TCRYO 45 0.858202029936
- B1H TCRYO 604
- B1H TCRYO 71
- B1H TCRYO 72
- B1H TCRYO 864 0.998737560012
- B1H noTCRYO 1
- B1H noTCRYO 28
- B1H noTCRYO 45
- B1H noTCRYO 604
- B1H noTCRYO 71
- B1H noTCRYO 72

BiHinnoTCRYO_864

0.994557244688 0.10121171875 0.99874

0.991569156916

0.994606975843

0.101252688575

0.94838546875

0.387040431975

0.858190458617

0.991544090068

Vertical

- B1V TCRYO 1 • B1V TCRYO 28 • B1V TCRYO 45 • B1V TCRYO 604 • B1V TCRYO 71 • B1V TCRYO 72 • B1V TCRYO 864 • B1V noTCRYO 1 • B1V noTCRYO 28
- 0.99958140625 0.409967397023
- 0.995526890262
- 0.23448292042
- 0.994606975842
- 0.991525985394
- 0.96894203125
- 0.999586479796
- 0.410120500401
- B1V noTCRYO 45
- B1V noTCRYO 604
- B1V noTCRYO 71
- B1V noTCRYO 71
- B1V noTCRYO 864

- 0.995600456478 0.234395476941
- 0.999950019664
- 0.991446644664
- 0.968934310905

All results Global inefficiency

Horizontal

- B1H_TCRYO_1 3.52735023308e-05
- B1H_TCRYO_28 1.21100855214e-05
- B1H_TCRYO_45 9.
- B1H_TCRYO_604
- B1H_TCRYO_71
- B1H_TCRYO_72
- B1H_TCRYO_864
- B1H_noTCRYO_1
- B1H_noTCRYO_28
- B1H_noTCRYO_45
- B1H_noTCRYO_604
- B1H_noTCRYO_71
- B1H_noTCRYO_72

Bliffir_noTCRYO_864

- 9.47893216183e-06 1.37108902765e-05 8.64301518656e-06 3.55083483215e-05
- 64 7.98048255631e-06
 - 0.00067203027777
 - 0.00092473932545
 - 0.000803848992371
 - 0.00076864350904
 - 0.000661103169435
 - 0.000410817789955

0.000488040197733

Vertical

- 1.67260310504e-05
 - $1.03132477105 \mathrm{e}{\text{-}}05$
 - $2.18342806374\mathrm{e}{\text{-}}05$
 - 1.9344153163e-05
 - 1.0161609921e-05
 - $1.21390772504 \mathrm{e}{\text{-}}05$
 - 1.03206413634 e-05
- B1V_noTCRYO_1

• B1V TCRYO 1

• B1V TCRYO 28

• B1V TCRYO 45

• B1V TCRYO 604

• B1V TCRYO 71

• B1V TCRYO 72

• B1V TCRYO 864

- B1V_noTCRYO_28
- B1V_noTCRYO_45
- B1V_noTCRYO_604
- B1V_noTCRYO_71
- B1V_noTCRYO_72
- B1V_noTCRYO_864

- 0.000483655358329
- 0.000679880499836
- 0.000638847020963
- 0.000376926494664
- 0.000388870117545
- 0.000510983787218
- 0.000481025404114

All results - clusters

H/V	TCRYO	seed	total lost	DS71	DS7 2	Arc 78	DS8 1	Arc81 1	Arc81 2	Arc81 3		DS71	DS7 2	Arc 78	DS8 1	Arc81 1	Arc81 2	Arc81 3
h	noTCRYO	1	6069667	1769	1477	210	296	85	5 8	145		2.914E-4	2.433E-4	3.460E-5	4.877E-5	1.400E-5	1.318E-6	2.389E-5
h	noTCRYO	28	2474334	1257	696	87	71	41	L 32	53		5.080E-4	2.813E-4	3.516E-5	2.869E-5	1.657E-5	1.293E-5	2.142E-5
h	noTCRYO	45	5488025	2442	1399	170	122	68	3 59	83		4.450E-4	2.549E-4	3.098E-5	2.223E-5	1.239E-5	1.075E-5	1.512E-5
h	noTCRYO	71	6351163	2441	1246	147	110	72	2 44	77		3.843E-4	1.962E-4	2.315E-5	1.732E-5	1.134E-5	6.928E-6	1.212E-5
h	noTCRYO	72	647755	116	91	12	22	2	2 0	8		1.791E-4	1.405E-4	1.853E-5	3.396E-5	3.088E-6	0.000E+0	1.235E-5
h	noTCRYO	604	6344613	2711	1498	178	141	78	3 72	96		4.273E-4	2.361E-4	2.806E-5	2.222E-5	1.229E-5	1.135E-5	1.513E-5
h	noTCRYO	864	6391936	1759	941	125	87	59	9 29	60		2.752E-4	1.472E-4	1.956E-5	1.361E-5	9.230E-6	4.537E-6	9.387E-6
	Hor no TCR	YO									mean	3.586E-4	2.142E-4	2.715E-5	2.669E-5	1.127E-5	6.831E-6	1.563E-5
										:	std dev	1.061E-4	5.033E-5	6.361E-6	1.097E-5	3.946E-6	4.711E-6	4.844E-6
h	TCRYO	1	6067091	137	3	0	0	(0 0	0		2.258E-5	4.945E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	28	2477304	2	0	0	0	(0 0	0		8.073E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	45	5485902	10	1	0	0	(0 0	0		1.823E-6	1.823E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	71	6363575	9	1	1	0	() (0		1.414E-6	1.571E-7	1.571E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	72	647758	12	0	0	0	(0 0	0		1.853E-5	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	604	6345408	9	3	1	0	() (0		1.418E-6	4.728E-7	1.576E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0
h	TCRYO	864	6390642	5	0	0	0	(0 0	0		7.824E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
	Hor TCRYO)									mean	6.765E-6	1.867E-7	4.496E-8	0.000E+0	0.000E+0	0.000E+0	0.000E+0
										:	std dev	8.794E-6	2.007E-7	7.109E-8	0.000E+0	0.000E+0	0.000E+0	0.000E+0
v	noTCRYO	1	6396074	1282	1182	148	182	66	5 22	88		2.004E-4	1.848E-4	2.314E-5	2.845E-5	1.032E-5	3.440E-6	1.376E-5
v	noTCRYO	28	2621359	744	685	84	105	39	9 15	75		2.838E-4	2.613E-4	3.204E-5	4.006E-5	1.488E-5	5.722E-6	2.861E-5
v	noTCRYO	45	6368657	1631	1600	199	232	109	9 24	157		2.561E-4	2.512E-4	3.125E-5	3.643E-5	1.712E-5	3.768E-6	2.465E-5
v	noTCRYO	71	6102095	1071	842	122	137	50) 19	90		1.755E-4	1.380E-4	1.999E-5	2.245E-5	8.194E-6	3.114E-6	1.475E-5
v	noTCRYO	72	6344624	1414	1193	157	199	78	3 30	108		2.229E-4	1.880E-4	2.475E-5	3.137E-5	1.229E-5	4.728E-6	1.702E-5
v	noTCRYO	604	1499531	212	204	31	46	21	L 0	21		1.414E-4	1.360E-4	2.067E-5	3.068E-5	1.400E-5	0.000E+0	1.400E-5
v	noTCRYO	864	6198079	1266	1127	163	177	66	6 25	100		2.043E-4	1.818E-4	2.630E-5	2.856E-5	1.065E-5	4.034E-6	1.613E-5
	Ver no TCR	YO									mean	2.121E-4	1.916E-4	2.545E-5	3.114E-5	1.249E-5	3.544E-6	1.842E-5
										:	std dev	4.429E-5	4.556E-5	4.412E-6	5.306E-6	2.828E-6	1.656E-6	5.406E-6
v	TCRYO	1	6397321	18	0	0	0	0	0 0	0		2.814E-6	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
v	TCRYO	28	2618019	5	0	0	0	() (0		1.910E-6	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
v	TCRYO	45	6366275	21	2	0	0	(0 0	1		3.299E-6	3.142E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	1.571E-7
v	TCRYO	71	6199805	12	1	0	0	(0 0	1		1.936E-6	1.613E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	1.613E-7
v	TCRYO	72	6343228	18	3	1	0	(0 0	0		2.838E-6	4.729E-7	1.576E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0
v	TCRYO	604	1499190	1	1	0	0	() (0		6.670E-7	6.670E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
v	TCRYO	864	6201229	17	1	0	0	() (0		2.741E-6	1.613E-7	0.000E+0	0.000E+0	0.000E+0	0.000E+0	0.000E+0
	Ver TCRYO)									mean	2.315E-6	2.538E-7	2.252E-8	0.000E+0	0.000E+0	0.000E+0	4.548E-8
										:	std dev	8.190E-7	2.294E-7	5.517E-8	0.000E+0	0.000E+0	0.000E+0	7.192E-8
											Coin II	E2 014004	1147 5000	602 72224	#DIV//01	#DI\//0	#DIV//01	#DIV//01
											Jail	00.014694	1141.0923	003.13221	#DIV/0!	#DIV/0	#DIV/0	#DIV/0!

Gain V

91.606326 754.91179 1129.9859

37

#DIV/0!

#DIV/0! 404.96905

#DIV/0!