Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements

Measuring Radiofrequency Multipoles in the LHC Crab Cavities

María Navarro-Tapia Alexej Grudiev Rama Calaga

Radiofrequency Group, Beams Department CERN, Geneva (Switzerland)

Third Joint HiLumi-LARP Annual Meeting 2013 Daresbury, November 2013

Non-axial symmetry Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

2 / 24

Non-axial symmetry Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

Introduction ○●○	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements O
Motivati	on and Object	cives		

Aim of this work

- Study of the multipolar error on the latest cavities.
 - Assess the strengths of the higher-order terms.
- Experimental verification of the RF multipolar components, by means of bead-pull measurements.

Introduction ○●○	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements O
Motivati	on and Object	cives		

Aim of this work

- Study of the multipolar error on the latest cavities.
 - Assess the strengths of the higher-order terms.
- Experimental verification of the RF multipolar components, by means of bead-pull measurements.

Introduction ○○●	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements O
Outline				

- 2 RF Multipole Theory
- 3 Measurement Setup
- 4 Summary and Conclusions

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements ○
Outline				

Introduction

- 2 RF Multipole Theory
 - 3 Measurement Setup
- 4 Summary and Conclusions
 - Acknowledgements

RF Multipole Concept

similar to

Static Multipole treatment in the Magnet Community

Fields in the aperture of accelerator magnets

- Fourier coefficients,
- field harmonics, or
- multipole coefficients.

RF Multipole Concept

similar to

Static Multipole treatment in the Magnet Community

Fields in the aperture of accelerator magnets

described by

- Fourier coefficients,
- field harmonics, or
- multipole coefficients.

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements
000	○●○○○○		○	○
Magnetio	c Multipoles			

Fourier expansion of the radial field components:

$$B_{r}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\sin n\phi + A_{n}(r_{0})\cos n\phi] \quad \text{being} \quad A_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\cos n\phi$$
$$B_{\phi}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\cos n\phi - A_{n}(r_{0})\sin n\phi] \qquad B_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\sin n\phi$$

Magnetic field distribution (skew positive)

Quadrupole (n=2) , Sestupole, $(n_{\Xi} = 3)$

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Measuring RF Multipoles

Introduction	RF Multipole Theory 0●0000	RF Multipolar Measurements	Conclusions ○	Acknowledgements ○
Magnetio	c Multipoles			

Fourier expansion of the radial field components:

$$B_{r}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\sin n\phi + A_{n}(r_{0})\cos n\phi] \text{ being } A_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\cos n\phi$$
$$B_{\phi}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\cos n\phi - A_{n}(r_{0})\sin n\phi] \qquad B_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\sin n\phi$$

Magnetic field distribution (skew positive)

Quadrupole (n = 2) , Sextupole, (n = 3)

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Measuring RF Multipoles

Introduction	RF Multipole Theory 0●0000	RF Multipolar Measurements	Conclusions ○	Acknowledgements ○
Magnetio	c Multipoles			

Fourier expansion of the radial field components:

$$B_{r}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\sin n\phi + A_{n}(r_{0})\cos n\phi] \text{ being } A_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\cos n\phi$$
$$B_{\phi}(r_{0},\phi) = \sum_{n=1}^{\infty} [B_{n}(r_{0})\cos n\phi - A_{n}(r_{0})\sin n\phi] \qquad B_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0},\phi)\sin n\phi$$

Introduction	RF Multipole Theory ००●०००	RF Multipolar Measurements	Conclusions ○	Acknowledgements O
RF Mult	ipoles			

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

All the remaining multipolar components (n > 1) might be present!
Not only the dipolar kick, but also higher order kicks.

Presence of higher-order RF multipolar kicks Beam dynamics perturbations

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

• All the remaining multipolar components (n > 1) might be present!

• Not only the dipolar kick, but also higher order kicks.

Presence of higher-order RF multipolar kicks Beam dynamics perturbations

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

• All the remaining multipolar components (n > 1) might be present!

• Not only the dipolar kick, but also higher order kicks.

Presence of higher-order RF multipolar kicks Beam dynamics perturbations

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

- All the remaining multipolar components (n > 1) might be present!
- Not only the dipolar kick, but also higher order kicks.

 Introduction
 RF Multipole Theory
 RF Multipolar Measurements
 Conclusions
 Acknowledgements

 Studies on Multipolar RF Quicks
 Studies
 Acknowledgements
 Studies
 Studies

Non-Linearity of Deflecting Field in LHC crab-cavities

A.Grudiev, CERN, BE-RF 15.11.2011 LHC-CC11, 14-15.11.2011, CERN

Proceedings of IPAC2012, New Orleans, Louisiana, USA

TUPPR027

STUDY OF MULTIPOLAR RF KICKS FROM THE MAIN DEFLECTING MODE IN COMPACT CRAB CAVITIES FOR LHC*

J. Barranco García, R. Calaga, R. De Maria, M. Giovannozzi, A. Grudiev, R. Tomás CERN, Geneva, Switzerland

Abstract

A crab cavity (CC) system is under design in the framework of the High Luminosity LHC project. Due to

where Z_0 is vacuum impedance, u_z the unit vector in Z direction, $E_{kck}=E_{\perp}\cdot e^{jax/c}; H_{kck}=H_{\perp}\cdot e^{jax/c}$ are the electric and magnetic fields in the particle frame,

Lorentz Force

$$\Delta p_{\perp}(r,\phi) = \frac{q}{c} \int_0^L \left[E_{\perp} + v_z \times B_{\perp} \right] \, \mathrm{d}z$$

Panofsky-Wenzel

$$\Delta p_{\perp}(r,\phi) = \frac{jq}{\omega} \int_0^L \nabla_{\perp} E_{acc}(r,\phi,z) \, \mathrm{d}z$$

$$B_{\perp}^{(n)} = \frac{1}{qc} F_{\perp}^{(n)} = \frac{nj}{\omega} E_{acc}^{(n)} \qquad [Tm/m^n]$$
$$b_n = \int_0^L B_{\perp}^{(n)} \, \mathrm{d}z \in \mathbb{C} \qquad [Tm/m^{n-1}]$$

A. Grudiev

Lorentz Force

$$\Delta p_{\perp}(r,\phi) = \frac{q}{c} \int_0^L \left[E_{\perp} + v_z \times B_{\perp} \right] \, \mathrm{d}z$$

Panofsky-Wenzel

$$\Delta p_{\perp}(r,\phi) = \frac{jq}{\omega} \int_0^L \nabla_{\perp} E_{acc}(r,\phi,z) \, \mathrm{d}z$$

$$B_{\perp}^{(n)} = \frac{1}{qc} F_{\perp}^{(n)} = \frac{nj}{\omega} E_{acc}^{(n)} \qquad [Tm/m^n]$$
$$b_n = \int_0^L B_{\perp}^{(n)} \, \mathrm{d}z \in \mathbb{C} \qquad [Tm/m^{n-1}]$$

A. Grudiev

Introduction	RF Multipole Th 00000●	eory R	F Multipolar	Measurements	Conclusions ○	Acknowledgements ○
Multipola	ar Kicks f	or the	Latest	Geometrie	S	

2012 updated geometries

* No couplers yet

	RF Dipole		$\frac{1}{4}$ -wave		4-rod	
$V_x = 10$ MV	$\Re(b_2)$	$\Im(b_2)$	$\Re(b_3)$	ᢒ(b₃)	$\Re(b_4)$	ᢒ(b₄)
b ₂ [mTm/m]	0	0	0	0	0	0
$b_3[mTm/m^2]$	4500	0	1100	0	1160	0
$b_4[mTm/m^3]$	0	0	0	0	0	0

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements ○
Outline				

Introduction

2 RF Multipole Theory

3 Measurement Setup

4 Summary and Conclusions

Acknowledgements

Slater Perturbation Theorem (*)

$$\omega^{2} = \omega_{o}^{2} \left[1 + k \frac{\int_{\Delta V} (\mu_{0} \mathbf{H}^{2} - \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}\Delta V}{\int_{V} (\mu_{0} \mathbf{H}^{2} + \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}V} \right]$$

- A perturbation of the cavity volume by a small amount ΔV will cause an unbalance of the electric and magnetic stored energies.
- The resonant frequency will shift to restore this unbalance.
- If the perturbation is small, this frequency shift is proportional to the original amount of energy stored in the perturber volume.

Since U is proportional to \vec{E}^2 or \vec{H}^2 , this theorem offers a way to measure the fields in the cavity.

(*) Microwave Measurements, Ginzton.

Slater Perturbation Theorem (*)

$$\omega^{2} = \omega_{o}^{2} \left[1 + k \frac{\int_{\Delta V} (\mu_{0} \mathbf{H}^{2} - \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}\Delta V}{\int_{V} (\mu_{0} \mathbf{H}^{2} + \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}V} \right] \quad \Rightarrow \quad \frac{\Delta \omega}{\omega_{o}} = \frac{\Delta U}{U}$$

- A perturbation of the cavity volume by a small amount ΔV will cause an unbalance of the electric and magnetic stored energies.
- The resonant frequency will shift to restore this unbalance.
- If the perturbation is small, this frequency shift is proportional to the original amount of energy stored in the perturber volume.

Since U is proportional to \vec{E}^2 or \vec{H}^2 , this theorem offers a way to measure the fields in the cavity.

(*) Microwave Measurements, Ginzton.

Slater Perturbation Theorem (*)

$$\omega^{2} = \omega_{o}^{2} \left[1 + k \frac{\int_{\Delta V} (\mu_{0} \mathbf{H}^{2} - \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}\Delta V}{\int_{V} (\mu_{0} \mathbf{H}^{2} + \varepsilon_{0} \mathbf{E}^{2}) \, \mathrm{d}V} \right] \quad \Rightarrow \quad \frac{\Delta \omega}{\omega_{o}} = \frac{\Delta U}{U}$$

- A perturbation of the cavity volume by a small amount ΔV will cause an unbalance of the electric and magnetic stored energies.
- The resonant frequency will shift to restore this unbalance.
- If the perturbation is small, this frequency shift is proportional to the original amount of energy stored in the perturber volume.

Since U is proportional to \vec{E}^2 or \vec{H}^2 , this theorem offers a way to measure the fields in the cavity.

(*) Microwave Measurements, Ginzton.

Bead-Pulling Measurement

- It exploits the Slater Perturbation Theorem.
- Pulling a perturbing object through the cavity while monitoring the the cavity resonant frequency.

 Introduction
 RF Multipole Theory
 RF Multipolar Measurements
 Conclusions
 Acknowledgements

 Measuring
 RF Multipolar Components
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Customarily used to measure the on-axis \vec{E} field in accelerating cavities.

Our requirements

- We are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

What about accuracy?

 Introduction
 RF Multipole Theory
 RF Multipolar Measurements
 Conclusions
 Acknowledgements

 Measuring
 RF Multipolar Components
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Customarily used to measure the on-axis \vec{E} field in accelerating cavities.

Our requirements

- We are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

What about accuracy?

 Introduction
 RF Multipole Theory
 RF Multipolar Measurements
 Conclusions
 Acknowledgements

 Measuring
 RF Multipolar Components
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Customarily used to measure the on-axis \vec{E} field in accelerating cavities.

Our requirements

- We are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

What about accuracy?

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

$$E_{acc}(r,\phi,z) = \sum_{n=0}^{\infty} E_{acc}^{(n)} r^n \cos n\phi$$

$$E^{(1)}_{acc} r^1 \sim 10^{-1}$$
 V/m
at $r=$ 10 mm

$$E^{(3)}_{acc}r^3\sim 10^{-3}$$
 V/m
at $r=$ 10 mm

 $E_{acc}^{(5)}r^5 \sim 10^{-5}$ V/m

Measuring RF Multipoles

$$E_{acc}(r,\phi,z) = \sum_{n=0}^{\infty} E_{acc}^{(n)} r^n \cos n\phi$$

$$E_{acc}^{(1)}r^1 \sim 10^{-1}$$
 V/m

$$E^{(3)}_{acc} r^3 \sim 10^{-3}$$
 V/m at $r=10$ mm

$$E_{acc}^{(5)}r^5 \sim 10^{-5}$$
 V/m

at r = 10 mm

Measuring RF Multipoles

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements
	000000	००००●०००	○	○
Higher-0 • Non-linear	rder effects. ity of the longitudin	Measurable quantit	ies	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(*) B. Hall, 2nd Joint HiLumi LHC-LARP Annual Meeting.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Measuring RF Multipoles

18 / 24

Transverse electric field distribution for the sextupolar component

Transverse electric field distribution for the sextupolar component

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements
000		०००००००●	○	O
Bead-Pu	ll Test Bench			

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements
000		୦୦୦୦୦୦୦●	○	○
Bead-Pu	ll Test Bench			

E. Montesinos, A. Boucherie

イロト イポト イヨト イヨト

-

000	000000		0	0	

Bead-Pull Test Bench

E. Montesinos, A. Boucherie

(ロ) (部) (E) (E) (E)

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions ○	Acknowledgements O
Outline				

- 2 RF Multipole Theory
- 3 Measurement Setup
- 4 Summary and Conclusions
 - Acknowledgements

- Three different cavities (RF dipole, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- In order to have **experimental evidence** of this higher-order effects, **precise** and **accurate** measurements are needed.
- A bead-pull setup has been built for the purpose.
- Measurements will follow.

- Three different cavities (RF dipole, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- In order to have experimental evidence of this higher-order effects, precise and accurate measurements are needed.
- A bead-pull setup has been built for the purpose.
- Measurements will follow.

- Three different cavities (RF dipole, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- In order to have experimental evidence of this higher-order effects, precise and accurate measurements are needed.
- A **bead-pull** setup has been built for the purpose.
- Measurements will follow.

- Three different cavities (RF dipole, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- In order to have experimental evidence of this higher-order effects, precise and accurate measurements are needed.
- A **bead-pull** setup has been built for the purpose.
- Measurements will follow.

The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Comission within the Framework Programme 7 Capacities Specific Programme, Gran Agreement 284404

Many thanks to L. Alberty, F. Pillon, A. Boucherie, L. Arnaudon, K. Marecaux.

Get curious - take part!

These Pellowships are co-funded by the European Union as a Narie Curie action (Grant agreement PCUPUHD-(GA-2010-2011) within the Seventh Promemort. Programme for Research and Technological Development.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Measuring RF Multipoles

23 / 24

Introduction	RF Multipole Theory	RF Multipolar Measurements	Conclusions	Acknowledgements

Measuring Radiofrequency Multipoles in the LHC Crab Cavities

María Navarro-Tapia Alexej Grudiev Rama Calaga

Radiofrequency Group, Beams Department CERN, Geneva (Switzerland)

Third Joint HiLumi-LARP Annual Meeting 2013 Daresbury, November 2013