

Cryomodule for Crab Cavity Tests with SPS

Shrikant Pattalwar

Accelerator Science and Technology Centre STFC Daresbury Laboratory, UK

3rd Annual Hi-Lumi Meeting Nov 11-15, 2013, Daresbury

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Acknowledgements

This presentation is on behalf of the members of the Global WP4 team

STFC ASTeC, Technology, University of Lancaster

- **CERN** Various Departments
- LARP ODU+SLAC, BNL, FNAL

Contents

- Factors Influencing Design Requirements
- Achievements so far ... Concept designs for Helium Vessel and Cryomodule
- Work in Progress
- Future Plans
- Conclusion

Requirements

Requirements for the **cryomodule** are influenced by various Factors

Requirements continued

Helium Vessel

UK 4-Rod Cavity	Cavity in He Vessel	Parts of the Vessel
		HC (dummy) beam pipe
Courtesy : Graeme Burt and Ben Hall, ULAN	Saclay-II type tuner	

Fully Assembled Cavity String (4R)

Helium Vessel

Cryomodule Schematic (P&ID)

Piping and Instrumentation diagram for LHC Crab Cavity Cryogenics System Legend Indicator TI101 to TI110 1.5K < T < 40K CERNOX or Si diode Courtesy : Andy May (ASTeC) TI111 to TI120 40K < T PT100 allocated to thermal shield External connection TI121 to TI130 40K < T PT100 allocated to couplers and intercepts ~ Drop off plate SC level probes LI131 to LI135 LP GHe Return LI136 to LI140 LN2 capacitance probe ATM **Relief** valve k PI141 to PI150 Pressure (and vacuum) indicators LN2 Supply X Control valve/gate valve HT151 to HT160 Heaters RV172 2K GHe Return CV161 to CV170 **Control valves** RV171 Bellows **2K LHe Supply** Relief valves and drop off disks RV171 to RV180 4K LHe (Precool) Coupler GV181 to GV190 **Gate valves** N2 **GN2** Return Не Vacuum shielding Pl 143 Pl 142 Magnetic shield RV173 HOM couple HOM couple couple input couple Idnoo MOH MO MOH ℃℃℃ ^{144A} U 131A u-131B TL 123A TI 122B TI 121A TI 122A TI 121B 11 114 113 TI 106 TI TI 103A 104A 103B 104B PI 147 PI 146 TI TI TI 105B TI GV 181 102A GV TI 112 105A 1028 TI 113 182 Beamline 🧲 Beamline TI 106A 106E RV175 ATM HT 151B HT 151A 101/ 101B RV174 PI 141 Lum 111

Cryomodule Concept

More details in - Conceptual design of a Cryomodule for Crab Cavities for HiLumi-LHC S. Pattalwar, et al, MOP 087, SRF 2013, Paris

High Luminosity

Compatibility with SPS Infrastructure

Assembly Sequence – Proposal 1 (Side Loading)

2 Outside the clean Room

• Load the cavity String from Side

3 Align the string

with the vacuum chamber

4. Lift and assemble

with top plate of the vacuum chamber

Final Assembly

Assembly Sequence – Proposal 2 (Top Loading

1 Clean room Operations Cavity, Coupler and Beam pipe 2 Outside the clean Room Mounting on the top plate

3 Outside the clean Room Assembly of the cold parts

4 Load from the top into the vacuum chamber

Courtesy : Ofelia capatina (CERN)

Shrikant Pattalwar 3rd Annual Hi-Lumi Meeting Nov 11-15, 2013 Daresbury

Final Assembly (Top Loading)

Cryomodule in SPS

Common Design Approach

UK 4-Rod

US Dipole

★ For illustration only

Conclusion –

A common design approach to accommodate all the 3 cavity designs has been successfully developed.

- External Envelope
- Cryogenic Interface
- Cryogenic Process

.

• Alignment (external and Internal)

Challenges –

Couplers and **Tuners** and their locations for the three designs are different.

Work In Progress

- Coupler designs for HOMs and LOMs and their integration with Infrastructure
- Magnetic Shielding
- Alignment
- Integration with Cryogenics and heat load management
- Switch over with the SPS BY-PASS or with other cryomodule
- Safety, Pressure Vessel Regulations etc.
- Tests at SM-18
- •

.

Heat Load Budget

HL per cryomodule		HL @2 K [W]	HL @ 80 K (TS)	Comment
Dynamic	Deflecting mode	5.0	-	Confirmed?
	Other Order Modes	TBD	TBD	
	RF Coupler	TBD	TBD	
	Beam Current	0.5		Tentative
Static	Radiation (cavity +Phase Sep. Cold surface + Thermal Shield	0.2	6.8	Rescaling from LHC • W/m2 @ cold mass • 1.7 W/m2 @ Thermal shield
	CWT	0.557(rad) + 0.892(cond) = 1.5W x 2 = 3.0	0.625(rad) + 5.926 (cond) = 6.6W x 2 = 12.6	1 heat intercept @ 80K in the middle
	Supporting System	1.0	3.3	6 tie rods/cavity
	RF Coupler	0.501(rad) + 0.853(cond) = 1.4W x 2 = 2.7	0.587(rad) + 5.662 (cond) = 6.3W x2 = 12.6	1heat intercept @ 80K in the middle
	Cables & Instrumentation	1.0	-	Tentative
	Other order modes	TBD	TBD	Design dependent
Totals		~ 13.4 + TBD	~ 34.9 +TBD	

Compliance with Regulations - PED

Future Plan (Expectations)

Shrikant Pattalwar 3rd Annual Hi-Lumi Meeting Nov 11-15, 2013 Daresbury

Conclusion

- 1. First level constraints defined by SPS layout have been successfully overcome
- 2. A common design approach to accommodate any of the 3 cavity designs has been successfully developed
- 3. Overall design process is at an advance stage .
- 4. Most of the remaining issues are well understood and solutions are being worked out through collaborative efforts
- 5. WP4 Global collaboration is working well and advancing in a right direction

DARESBURY LABORATORY

Cryogenics for Superconducting RF Development

cern.ch