High Luminosity LHC

Cooling configuration in IR1 and IR5 based on the present layout

Rob van Weelderen,

Cryogenic Group, Technology Department, CERN with the contributions of L. Tavian, K. Brodzinski, H. Allain, U. Wagner, A. Ballarino

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Overview

- Generic layout of cryogenic services
- Specifics for Q5 & Q6
- Specifics for D2, Q4 (- crab cavities)
- Specifics for D1 & IT

Generic layout of cryogenic services in points 1 & 5 (1/4)

- Cryogenic layout for new Matching Section (MS) for the HiLumi upgrade aimed at a peak luminosity of 5×10³⁴ cm⁻²s⁻¹ with leveling
- 2 new cryoplants at P1 & P5

Generic layout of cryogenic services in points 1 & 5 (2/4)

3. For collimation we need to change also this part, DS in the continuous cryostat

 Deep change also matching section: Magnets, collimators

and CC

 Deep change in the IRs and interface to detectors;
 relocation of Power Supply

ATLAS

CMS

 4. LR BB compensation wires

Courtesy L. Rossi

010

We will address the area from Q1 up to Q6 & DFBA

IR1/IR5 Baseline: New compared to Existing (3/4)

Item\cooled or powered by	New Plant @ IR on Surface	Existing Sector Cryoplants	New DFB: X @ Surface	Existing DFB: A @ Tunnel	New DFB: L @ Surface
IT&D1					
Matching Section					
Continuous Cryostat					

- MS, IT & D1 serviced by New cryoplants, continuous cryostat by existing ones (+ independent warm-up/cool-down)
- 2. Redundancy: **yes**, but level to be defined in detail later (reduced luminosity operation or stand-by only)
- 3. All magnets at 1.9 K except for Q5 & Q6 at 4.5
- 4. DFB-X and L (servicing D1 & IT and MS) at surface (# of links and DFBs to be optimized), DFB-A (servicing continuous cryostat) stays in tunnel

Baseline for P1 & P5 layout: Matching section cooled with inner triplet cryoplants (4/4)

Notes:

- Q5, Q6 at 4.5 K,
- DFBA remains in tunnel, # of superconducting links and surface DFB-boxes to be optimized,
- level of cryogenic redundancy (IB) to be detailed
- Space requirements for CCB and shaft-piping

New connection type to DSL (superconducting link)

New QRL & jumper connection adaptation

Specifics for D2, Q4 (stand-alone @1.9)

LHC-ARC type cooling: typical HX-size > 41 mm ID (> 50 mm yoke hole) for ~17 W loadActively cooled beam screen foreseen to keep load to 1.9 K low (if not increase HX-size)New connection type to DSL (superconducting link)DSL services not shown (see
U. Wagner's talks)

D1 & IT: heat loads Total heat load (vertical crossing)

		10 cm gan in ICs		50 cm gan in ICs			
		10 cm gap in ics		So chi gap in ies		For sizing use:	
		Magnet	Beam	Magnet	Beam		
		cold mass	screen	cold mass	screen	Cold mass	
		Power [W]				710 W @ 1.9 K	
	Q1A + Q1B	100	175	100	170	(650 W ~ 1.0 W/m due to	
	Q2A + orbit corr.	95	60	100	65	heavy beam screen)	
	Q2B + orbit corr.	115	80	120	80	Beam-screen & BIMs	
	Q3A + Q3B	140	80	140	80	683 W @5 K - 20 K /40 - 60 H	
	СР	55	55	60	55	= 12 W/m	
	D1	90	60	90	60	(650+16+0.3 W/m image	
	Interconnects	20	140	20	105	currents, excluding electron	
	Total	615	650	630	615	Cloudy	
e	sv L. S. ESPOSITO					1192 M or 21 M/m with 500	

Total values for horizontal crossing are about 10% lower

W electron cloud !

Court

D1 & IT: heat loads Total heat load (vertical crossing)

		10 cm gap in ICs		50 cm gap in ICs		For sizing use:	
		Magnet cold mass	Beam screen	Magnet cold mass	Beam screen	Cold mass	
			Power	[W]		710 W @ 1.9 K	
	Q1A + Q1B	100	175	100	170	(650 W ~ 1.0 W/m due to	
	Q2A + orbit corr.	95	60	100	65	heavy beam screen)	
	Q2B + orbit corr.	115	80	120	80	Beam-screen & BLMs	
	Q3A + Q3B	140	80	140	80	683 W @5 K - 20 K /40 - 60	
	СР	55	55	60	55	= 12 W/m	
	D1	It'd 1	60	90	60	(650+16+0.3 W/m image	
	Interconnects	20 De	tter be a	20	105	currents, excluding electron	
	Total	615	650	uppresse	adu		
tesy L. S. ESPOSITO						1183 W or 21 W/m with 500	

Κ

W electron eloud

Total values for horizontal crossing are about 10% lower

Cour

Placing of cryo-equipment considered (variant 4)

	Variant 1	Variant 2	Variant 3	Variant 4
Power limit (HX holes > 77 mm)	<mark>5 50</mark> W (Q1-D1) v _{apour} ≤ 7 m/s	550 W (Q1-D1) v _{vapour} ≤ 7 m/s	710 W D1 HX-Area	710 W D1 & CP HX-Area
Q1-Q3 HXs Q1-Q3 Free Area Q1-Q3 Cryostat Pumping line	2 <77 mm holes ≥ 110 cm ² 97-100 mm	2x77 mm holes ≥ 110 cm ² 97-100 mm	2x77 mm holes ≥ 110 cm ² 97-100 mm	≥ 2x77 mm holes ≥ 110 cm ² 97-100 mm
CP HXs CP Free Area CP Cryostat Pumping line	none ≥ 300 cm ² none	2x77 mm holes ≥ 130 cm ² 97-100 mm	none ≥ 85 cm ² none	≥ 2x49 mm holes ≥ 85 cm ² none
D1 HXs D1 Free Area D1 Cryostat Pumping line	none ≥ 300 cm ² none	none ≥ 130 cm ² none	≥ 2x77 mm holes ~ 85 cm ² ~ X mm	≥ 2x49 mm holes ~ 85 cm ² ~ X mm
Phase separator & piping entries/exits	1 Q1-end 2 Q3-CP	1) Q1-end 2) CP-D1	 Q1-end Q3-CP CP-D1 	1) Q1-end 2) Q3-CP
QRL-jumpers	С 3-СР S И	CP-D1 SM	Q3-CP SM	Q3-CP SM
Luminosity				

Coil cooling principle

Heat from the coil area (green) and heat from the beam pipe (purple) combine in the annular space between beam pipe and coil and escape radially through the magnet "pole" towards the cold source → "pole, collar and yoke" need to be "open" :

Calculations show that > 80 % of the heat is evacuated via the pole piece!

•Heat Conduction mechanism in the coil packs principally via the solids

•Longitudinal extraction via the annular space is in superfluid helium, with T close to T_{λ} and with magnets up to 7 m long not reliable \rightarrow "pole, collar and yoke" need to be "open"

≥ 1.5 mm annular space

Heat flow distribution - no helium channel in the mid-plane

85 % through the helium channels in the pole 15 % through the external insulation

Coil magnet configuration assumed for calculations

- Cable: 0.15 mm G-10 insulated
- 2-3-4 have been homogenized to form one mono layer
- Lack of some material thermal properties: need to be measured

Model will be changed to evaluate impact of partial blocking of inner layer by additional quench heaters (this is a thermally very bad location!) : work in progress

Criticality analysis

	T _{max} (K) (position)	Lowest T margin (K) (position)
HX - 2.05 K – no He channel in the mid-plane – collars/yoke open	2.75 (mid-plane)	4.18 (pole)
HX - 2.05 K – no He channel in the mid-plane – collars/yoke closed	2.76 (mid-plane)	4.17 (pole)
HX – 1.9 K – no He channel in the mid-plane – collars/yoke closed	2.66 (mid-plane)	4.3 (pole)
HX - 2.05 K – He channel in the mid-plane – collars/yoke open	2.47 (~± 20° axis)	4.18 (pole)
HX - 2.05 K – He channel in the mid- plane – collars/yoke closed	2.47 (~± 20° axis)	4.17 (pole)
HX – 1.9 K – He channel in the mid-plane – collars/yoke closed	2.36 (~± 20° axis)	4.3 (pole)

All results scale ~ linearly with bath temperature Lowest T-margin always at the pole No real criticality for yoke and collar packing

Saturation analysis with regards to peak power deposition 8 mm diameter holes in the pole piece

Hole spacing (mm / equivalent %)	Saturation (W/m)	Peak power deposition (mW/cm ³)	T-margin (K) position	Safety factor regards to nominal
284 mm – <mark>0.6</mark> %	33.3	8	4.1 (pole)	2
129 mm – 1.28 %	66.5	16	4.06 (pole)	4
78.9 mm – 2.1 %	99.6	24	4.01 (pole)	6
54.2 mm – 3.05 %	132.9	32	3.81 (mid-plane/inner coil)	8
39.7 mm – 4.16 %	166	40	3.52 (mid-plane/inner coil)	10
30.2 mm – 5.47 %	199.3	48	3.25 (mid-plane/inner coil)	12

- Hole spacing: spacing between the center of 2 consecutive holes
- Equivalent %: percentage open in the pole piece with regards to the surface of the pole piece on the annular space side

Safety factor – spacing graph 8 mm diameter holes in the pole piece

Beam-screens with 16 mm & 6 mm Tungsten

Section LHC 2: Octagon 2mm, Cooling tubes 016 and Tungsten Block 16mm

Section LHC 4: Octagon 2mm, Cooling tubes Ø6 and Tungsten Block 6mm

Mass: 515.514 kg

Q1, 515 kg, 4 x 14.4 mm ID

Mass: 290.92 kg

Q2-D1, 291 kg, 4 x 4.4 mm ID

Conclusions

- MS, IT & D1 serviced by new cryoplants, continuous cryostat by existing ones (+ independent warm-up/cool-down)
- Redundancy level to be defined in detail later (reduced luminosity operation or stand-by only)
- **DFBs** servicing D1 & IT and MS at **surface**, **DFB-A** (servicing continuous cryostat) stays in **tunnel**
- Cryogenic design requirements for IT being implemented in cold-mass design (quench heaters implementation critical)
- Beam-screens & BLMs cooling on the limit, 40 K 60 K option being considered

