

Update on matching section layout vs. crabcavity voltage

B. Dalena, R. De Maria, S. Fartoukh, J. Payet

Thanks to: M. Giovannozzi and B. Holzer

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Contents

- introduction and motivation
 - reduction of crab voltage
- proposed IR1/5 Matching Section (MS) layouts
- properties of the new layouts
 - collision optics
 - chromatics properties
 - injection optics
 - considerations on optics transitions

2

INTRODUCTION

3. Dalena 3rd joint HiLumi LHC-LARP Annual Meeting, 11-15 November 2013 Daresbury

Crab cavity voltage

⇒ increasing the beta function at the CRAB

using

High Luminosity LHC

- MS quadrupole types
- MS quadrupole positions

	LHC	HL-LHC baseline
Q4	MQY, G=160 T/m @4.5 K Ø = 70 mm, L = 3.4 m	MQYY, G=125 T/m @1.9 K Ø = 90 mm, L = 3.5 m
Q5	MQML, G=160 T/m @4.5 K Ø = 56 mm, L = 4.8 m	MQYL, G=160 T/m @4.5 K Ø = 70 mm, L = 4.8 m
Q6	MQML, G=160 T/m @4.5 K Ø = 56 mm, L = 4.8 m	MQML, G=160 T/m @4.5 K Ø = 56 mm, L = 4.8 m
Q7	2×MQM, G=200 T/m @1.9 K ∅ = 56 mm, L = 3.4 m	2×MQM, G=200 T/m @1.9 K ∅= 56 mm, L = 3.4 m

Optimization desiderata

• Higher β function at crab cavity location

Compatible with

- injection optics (at β^* 3, 5, ? m)
- pre-squeeze within and possibly beyond the chromatic limits
- squeezable to very low β^* to back-up ATS

Results shown have the triplet gradient of 140 T/m, \emptyset = 150 mm, latest HLLHCV1.0 version

Proposed layouts

COLLISION

B. Dalena 3rd joint HiLumi LHC-LARP Annual Meeting, 11-15 November 2013 Daresbury

Round Optics

 $\beta^* = 15 \text{ cm} (\text{ATS})$

About same β functions increase with respect to the baseline optics at the crab location (s~400 m and s~700 m) in **v1** and **v2**

Non ATS optics

 $\beta^* = 15 \text{ cm} (\text{ATS})$

Q7+ gives more flexibility at collision towards small β functions

Collision apertures

Round beams ATS

- Q5 beam screen re-oriented in the plane with higher $\boldsymbol{\beta}$
- apertures of Q7+ magnet modeled as Q7
- apertures in the triplet use an octagon model with ISO tolerances (bs_type = 5)

Round beams non ATS

uminosity

similar to ATS optics in the matching section quadrupoles

-nominal normalized emittance: $\gamma\epsilon$ =3.75 µm rad total crossing angle: 590 µrad

Chromaticity correction

• both proposed versions give about same quality of chromaticity correction with respect to the baseline (in both x,y planes)

• in non ATS optics first order chromaticity corrected using all the sextupoles of the LHC arcs

• no correction of second and third order chromaticity in non ATS optics

Flat beam optics

B. Dalena 3rd joint HiLumi LHC-LARP Annual Meeting, 11-15 November 2013 Daresbury

Crab-cavity voltage gain

Round beams

Side, IR and	Baseline	Proposed [MV]		Proposed non ATS [MV]	
beam	[MV]	v1	v2	v1	v2
H L/R 5 b 1	10.8/12.0	8.7/8.8	8.9/8.8	9.2/9.4	8.8/9.4
H L/R 5 b 2	12.0/10.8	8.8/8.7	8.8/8.9	9.4/9.2	9.4/8.8
V L/R 1 b 1	11.8/10.8	8.7/8.7	8.7/8.9	9.3/9.3	9.3/8.6
V L/R 1 b 2	10.8/11.8	8.7/8.7	8.9/8.7	9.3/9.3	8.6/9.3

Flat beams

Side, IR and beam	Baseline [MV]	Proposed [MV] V1	Proposed [MV] v2
H L/R 5 b 1	10.1/11.4	8.1/8.3	8.3/8.3
H L/R 5 b 2	11.4/10.1	8.3/8.1	8.3/8.3
V L/R 1 b 1	11.2/10.1	8.2/8.1	8.2/8.3
V L/R 1 b 2	10.1/11.2	8.1/8.2	8.3/8.2

possibility to reduce the crab voltage of about 20%

INJECTION

B. Dalena 3rd joint HiLumi LHC LARP Annual Meeting, 11-15 November 2013

Optics injection

High Luminosity LHC

Injection $\beta^* = 5$ m

Injection apertures

- in v2 no aperture problem in Q6
 ⇒ in v1 it is cured by changing the MQML in MQYL type
- \bullet Q5 beam screen re-oriented in the plane with higher β
- apertures of Q7+ magnet modeled as Q7
- apertures in the triplet use an octagon model with ISO tolerances (bs_type = 5)
- -nominal normalized emittance: $\gamma \epsilon$ =3.75 µm rad total crossing angle: 590 µrad @ 3 m, 490 µrad @ 5 m
- -latest aperture model for the new HL-LHC magnets described in R. De Maria, S. Fartoukh, TUPFI014, IPAC13
- -beam tolerance budget (closed orbit, beta-beating, spurious dispersion) and beam halo geometry as the one described in J.B. Jeanneret, R. Ostojic, CERN-LHC-Project-Note 111 (1997)

CONSIDERATIONS ON OPTICS TRANSITIONS

Q4/Q5/Q6 strengths vs β^*

- Max strengths variation between collision and injection ~ 20%
- In transition optics they tend to exceed the maximum gradient
- Difficult to keep low beta in Q6 and catch the correct ATS R/L phase at $\beta^* = 3$ m

100

98

96

94

92

90

88

86

84

0

q4 15b1 q4 15b2

q4 r5b1 q4 r5b2

1

2

%

GMax = 125 T/m, L = 3.5 m

3

4

5

Q7/Q7+ strengths vs β^*

- Both Q7 strengths are at lower limit for injection (they limit the high β^* reach at injection)
- Monotone functions of strength as function of β^* in transitions optics can be find easly for these quadrupoles
- In order to overcome this lower limit at injection (and be able to rise the β*), can we use:
 - \circ Q7+ \Rightarrow 1 MQ M + 2 MQTL
 - \circ Q7+ \Rightarrow 1 MQ + 2 MQTL

?

High Luminosity LHC

Q8/Q9/Q10 strengths vs β^*

- Almost constants (10% variation): except for Q8 beam 2, R side
- Relatively easy to get a monotonic behavior in the strength of most of these quadrupoles

100

95

90

85

80

75

70

65

q8 15b1 q8 r5b1

q8 15b2 q8 r5b2 .

%

B. Dalena 3rd joint HiLumi LHC-LARP Annual Meeting, 11-15 November 2013 Daresbury 20

Q1/Q2/Q3 strengths vs β_{μ}^*

- Same geometry and maximum gradient of the baseline (140 T/m)
- Q1, Q2 decreasing \downarrow
- Q3 increasing ↑
- Max strengths variation between collision and injection ~ 5%

 Max strength variation between Q1, Q2 and Q3 ~ 5% (< 11% given by the Trim)

Conclusion & Outlook

	HiLumi baseline	Proposed layouts v1	Proposed layouts v2
Q4	MQYY, G=125 T/m @1.9K	MQYY, G=125 T/m @1.9K	MQYY, G=125 T/m @1.9K
	Ø = 90 mm, L = 4.5 m	Ø = 90 mm, L = 3.5 m	Ø = 90 mm, L = 3.5 m
Q5	MQYL, G=160 T/m @4.5K	MQYL, G=160 T/m @4.5K	MQYL, G=160 T/m @4.5K
	Ø = 70 mm, L = 4.8 m	Ø = 70 mm, L = 4.8 m	Ø = 70 mm, L = 4.8 m
Q6	MQML, G=160 T/m @4.5K	MQYL, G=160 T/m @4.5K	MQML, G=160 T/m @4.5K
	Ø = 56 mm, L = 4.8 m	∅ = 70 mm, L = 4.8 m	Ø = 70 mm, L = 4.8 m
Q7	2×MQM, G=200 T/m @1.9K	2×MQM, G=200 T/m @1.9K	2×MQM, G=200 T/m @1.9K
	∅= 56 mm, L = 3.4 m	∅= 56 mm, L = 3.4 m	∅= 56 mm, L = 3.4 m
Q7+		2×MQM, G=200 T/m @1.9K ∅= 56 mm, L = 3.4 m	<mark>2×MQM, G=200 T/m @1.9K</mark> ∅= 56 mm, L = 3.4 m

- possibility to reduce crab cavity voltage by 20% (rounds optics)
- possibility to gain lattice flexibility in collision
- Q5 apertures below the n1 limit for flat beams

Look more at:

- \Rightarrow Transition optics
- \Rightarrow High $\beta^* > 5$ m optics (**inj**, vdm)
 - with $1 \times MQ(M) + 2 \times MQTL$ instead of $2 \times MQM$ for Q7+

cern.ch

Chromaticity correction

• both proposed versions give about same quality of chromaticity correction with respect to the baseline (in both x,y planes)

• in non ATS optics first order chromaticity corrected using all the sextupoles of the LHC arcs

 no correction of second and third order chromaticity in non ATS optics

