

D1 Design at 150 mm Aperture and Plans

T. Nakamoto, Q. Xu, M. Sugano, H. Kawamata, M. Iio, T. Ogitsu, K. Sasaki, N. Kimura, M. Yoshida, A. Yamamoto, E. Todesco

3rd Joint HiLumi LHC-LARP Annual Meeting 11-15 November 2013, Daresbury Laboratory

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Objective: New D1

- For HL-LHC upgrade, needs for new Inner Triplet system at IR1 & IR5.
 - Large aperture (150 mm) HF Quadrupoles, corrector package and D1.
- New beam separation dipole (D1) should be accommodated with large aperture IT Quads; which will need a large aperture (large beam size) and 50 % increase in original integrated field (distance btw D1-D2 shortened).

01 Q2a Q2b Q3 SM D16.8 6.8 2.2 6.3 O: 140 T/m MCBX MCBX MCBX 25/4.5 T m MCBX: 2.1 T D1: 5.6 T 35 T m 20 30 40 50 60 70 80 distance to IP (m)

Design Parameter Change

- Coil aperture of D1 (NbTi) was once set to be 160 (=150+10) mm until April 2013.
 - Extra space (+10mm) reserved for additional thicker beam shielding to suppress heat deposition
- Radiation simulation results for D1
 - First result for D1 with 150 mm aperture with ³/₂
 beam shielding of tungsten
 - Peak dose in lifetime: a few 10 MGy
 - Peak heat deposition: 1-2mW/cm³
 - Additional beam shielding will be unnecessary...

New coil aperture of 150 mm in May 2013

- Requirements for the Hell cooling was relaxed...
 - Free Area 130 cm², or
 - Free area 100 cm^2 + 2 x ϕ 49 mm HX holes

New iron cross section:

Free area >130 cm² + 2 x ϕ 49 mm HX holes

• Availability: *NbTi LHC MB outer cable*

R. van Weelderen (March 2013)

		L _{mech} is longer.		Concern about	
Design variants for D	JT T2	Conflict with test	ertu	higher local stress	
		cryostat.	nted at N	in coil and yoke.	
		Option A: LL70		Option B: LL80	
Bore diameter		150 mm			
# of turns		44 (4 + 8 +13 +19)			
Nominal field (dipole)		5.22 T		5.97 T	
Magnetic length *		6.7 m		5.9 m	
Operating current		11 kA		13 kA	
Injection current		~ 0.7 kA		~ 0.84 kA	
Field homogeneity		<0.01% (R _{ref} =50 mm	<mark>ו) <</mark> 0.	01% (R _{ref} =50 mm)	
Peak field in the coil (2D)		6.0 T		6.9 T	
Load line ratio (2D)	9	% @ 1.9 K / 90% @ 4	.2 K	80% @ 1.9 K	
Inductance (low / nominal field		5.7 / 5.2 mH/m		5.7/5.1 mH/m	
Stored energy		294 kJ/m		391 kJ/m	
Peak field/central field		1.15		1.16	
Lorenz force X/Y (1 st quadrant)		1.3/0.5 MN/m		1.7/0.7 MN/m	
Outer dia. of iron yoke		550 mm		550 mm	
Inner dia. of iron yoke		222 mm		222 mm	
Strand diameter		0.825 mm		0.825 mm	
Cu/Non-Cu ratio		1.95		1.95	
Cable dimension		15.1* 1.48mm ² /	1	.5.1* 1.48mm² /	
/ insulation		0.16 mm (radial)		0.16 mm (radial)	
		0.145 (azimuthal)	().145 (azimuthal)	
No. of strands		36		36	
Keystone angle		0.9 °		0.9 °	
Superconductor current density		1710 A/mm ²		1954 A/mm ²	
Total length of the cable	26	18 m (Coil length ~7.1	<mark>l m)</mark> 548 n	n (Coil length ~6.3 m)	

Latest Design Parameters of D1: Option C

- Coil ID: **150 mm**
- Integrated field:35 T m (26 Tm at present LHC)
 5.59 T at 12 kA. L_{coil}=6.3 m
- T_{op}: 1.9 K by Hell cooling
- Op. point (2D coil): **75 %**
- Coil layout: 1 layer of 15.1 mm cable
 - Better cooling. Saving space for iron yoke.
- Conductor: Nb-Ti LHC MB outer cable
- Structure: Collared yoke structure by keying
 - RHIC dipole, LHC MQXA, J-PARC SCFM
 - Enhancing iron material for stray field issue
- Field quality: $< 10^{-4}$ at $R_{ref} = 50$ mm
- Cold mass OD: 550 +10 x 2 = 570 mm
- Cryostat OD: 914 mm, same as MB cryostat
- Radiation, energy deposition:

A few 10 MGy, 1~2 mW/cm³

Stress management

- High saturation, stray field, flux return cryostat
- Radiation resistance, cooling capability

2D Cross Section

- Same cross section for iron yoke for the Option C and Option A.
- The total void area in the iron yoke: 154 cm²
- 2 x ϕ 50 mm holes reserved for HX

Variation of Multipole Coefficients: b₃ (2D)

Variation of Multipole Coefficients: b₅ and higher (2D)

•Similar behaviors of Option C and A.

•Both of them look acceptable.

Multiple coefficients (1e-4)

Transfer Function

Stray Field of the Magnet

Mechanical Analysis: After excitation (110 % I_{nom})

AN

ΛN

SEP 9 2013 10:31:05 NODAL SOLUTION

PowerGraphics EFACET=1 AVRES=Mat DMX =.001966 SMN =666.208 SMX =.115E+10

YF =.101515 Z-BUFFER 0 .244E+08 .489E+08 .733E+08

> .978E+08 .122E+09 .147E+09 .171E+09

> .196E+09

(AVG)

SEP 9 2013 10:29:48 NODAL SOLUTION STEP=4

PowerGraphics EFACET=1 AVRES=Mat DMX =.001378 SMN =235260 SMX =.145E+09

SUB =1 TIME=13 SEQV

ZV =1 DIST=.046653 XF =.054171

YF =.043522 Z-BUFFER 0 .161E+08

> .322E+08 .483E+08 .644E+08

.806E+08

.113E+09

.129E+09 .145E+09

(AVG)

STEP=4 SUB =1 TIME=13 SEQV

ZV =1 DIST=.199919 XF =.142247

XF YF

Coil Stress at Each Step

150 mm aperture, Option C (LL75) with 110% of the nominal current.

- $\sigma_{\text{Pole}_\text{Ave.}}$ of 70 MPa, $\sigma_{\text{MP}_\text{Ave.}}$ of ~95 MPa $\sigma_{\text{Pole}_\text{Ave.}}$ of ~5 MPa, $\sigma_{\text{MP}_\text{Ave.}}$ of 90 MPa At Assembly:
- At excitation: ۲
- Peak stress below 150 MPa

Coil stress (MPa)

Coil End Design by ROXIE

• Objectives:

17

- keep compact coil ends,
- compensation of field integral of multipoles,
- lower peak field.
- 1 subdivision of CB3 in Return End to reduce peak field: 2 + 6 turn
 - 3 % higher peak field in the end
- Iron covers the whole coil ends.
- Layer jump modeled by CAD >> Simplified "Bricks" model in ROXIE

Many thanks to Susana Izquierdo Bermudez to fix ROXIE

CAD "Layer Jump" model

Modeled with "Bricks" in ROXIE (blue)

CB1

Peak Field in the Coil End

- Peak field moved from Block 3 to Block 1 by subdivision.
- Peak field of 6.75 T >> operating point for Option C is 78 % (75 % in 2D coil).

Field Integral & Magnet Length: Option C (LL75)

-60 -70 >> Acceptable for the vertical cold test at KEK

Radiation Resistant Materials R&D

- New radiation resistant GFRPs (w/ S-2 Glass or T-Glass) are baseline for coil wedges, end spacers.
 - Cyanate Ester & Epoxy
 - BT (Bismaleimide Triazine)
 - BMI (Bismaleimide)
- Trial production has been made: prepreg sheets, laminated plates and pipes.
- Backup plan (in case of higher dose) would be metallic parts with Polyimide coating by "Vapor Deposition Polymerization" technology.
- Irradiation test by electron and gamma rays
 - Gamma rays (Co⁶⁰), 2 MeV electron at JAEA Takasaki
 - 30 MeV electron at KUR

After irradiation of 10MGy with 30 MeV electron beam

Ordinary SC coils (J-PARC SCFM) with G10 (epoxy + E glass) end spacers and wedges.

BT-GFRP pipe for end spacers and pipe $(\phi 160, L1000)$

Backup Plan: Polyimide coating on

17

RT Gamma-ray Irradiation Tests

- All new GFRPs (CE&Epoxy, BT, and BMI) shows good radiation resistance up to **100 MGy**.
- Ordinary G10 (MQXA) already showed significant degradation at 10 MGy.

GFRP (S2 glass & BT resin) will be adopted for the new D1

Flexural strength test (G10, 30MGy)

2m-long Model Magnet - Overview

Single-layer coil, 4-split spacer collars, collared yoke by keying

2m-long Model Magnet Development – Status

- Coil design (ϕ 150mm, 75%) will be finalized soon.
- Engineering, drawing ongoing.
 - Reuse of available tooling and jigs for J-PARC SCFM.
- NbTi SC cable with standard Apical insulation (220 m x 4) to be delivered from CERN in Jan. 2014.
- Radiation resistant GFRP (plates, pipes) from ARISAWA for wedges and end spacers to be delivered in Jan. 2014.
- Practice coil winding anticipated in March 2014.
- Discussion with vendors, JFE Steel (EFE steel) and Nippon Steel & Sumikin Stainless Steel (YUS130S), started. Supply even for the model magnets.
- Fine blanking for spacer collars and iron yokes will be adopted for the full-scale prototypes and a production.
 - Combination of laser cut and machining will be adopted for the 2m long models.
- Mechanical short model in spring 2014.
- Renovation of development area.
- Modification and consolidation of the vertical cryostat, bus lines, and the 15kA PC.

Plans (or Prospect...)

- JFY2013 (until March 2014)
- Practice coil winding. Mechanical short model JFY2014

Budget supported by ATLAS-Japan

• 1st 2m long model magnet. Cold test in vertical cryostat at 1.9K.

Beyond this, new funding for the construction (including R&D) is necessary. JFY2015 (Tentative plan...)

- 2nd 2m long model magnet, if necessary.
- Major consolidation in cryogenics. New construction of a horizontal cold-test bench. (Otherwise, horizontal cold test at SM18/CERN??)

JFY2016

- One full-scale prototype magnet by a manufacturer JFY2017
- One full-scale prototype cryostat by a manufacturer JFY2018
- A series production of the magnets and the cryostats (5 or 6 sets including the spare) to be completed by 2022.
- *Presumably, horizontal cold testing at KEK will determine the production rate...21

Summary

- Conceptual design study for the new D1 has been made for Option C: *\u03c6150mm, 35 Tm, load line ratio of 75 % in 2D (78 % in total).*
 - Nominal field of 5.59 T at 12 kA, with a peak field of 6.75 T (78% at 1.9K).
 - Field quality in 2D along excitation is acceptable and successfully optimized at nominal current under high saturation effect.
 - Coil end effects are still observed at S.S. of the full-scale model and further optimization on field integral of B_3 would be necessary.
 - The whole magnet length of 6.9 m will fit to the vertical cryostat at KEK.
 - Mechanical analysis: this option is feasible.
 - To be addressed: quench protection studies.
- 2-m long practice coil winding in JFY2013, followed by a 30-cm long mechanical short model.
 - Engineering work underway. Procurement started.
 - New radiation resistant GFRP (S-2 glass & BT resin) adopted for wedges, end spacers.
 - Renovation of development area, consolidation of cold test stand ongoing.
 - Collaboration (support) with CERN: NbTi cable, QPH, fabrication of collar & yoke, etc.
- LHC/ATLAS upgrade review at KEK in this Nov. Funding proposal for construction (+ R&D) starting from JFY2014 will be submitted.