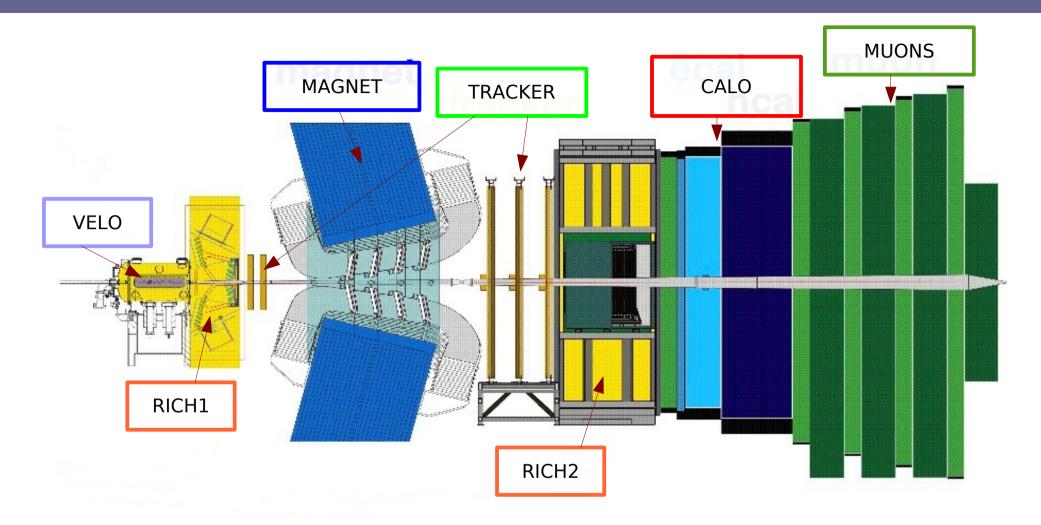


# Calorimeter Upgrade

#### Introduction


On behalf of the LHCb Calorimeter upgrade group

Calorimeter Architecture review Friday June 14th, 2013

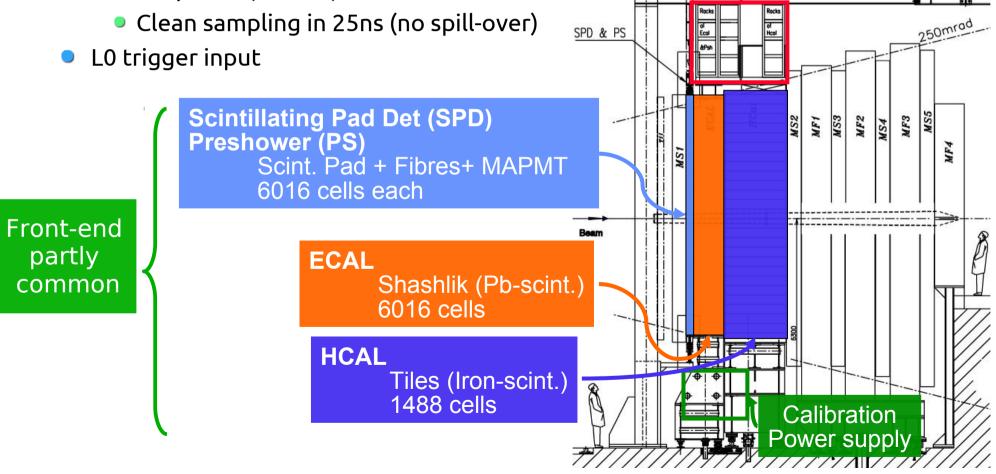
Frédéric Machefert Laboratoire de l'Accélérateur Linéaire, Orsay



### The LHCb detector



- Vertex locator (surrounding the IP)
  - At present → strips detector
- Magnet (~4Tm)
- Tracking stations


- Particle identification based on
  - 2 RICH
  - Calorimeter system
    - ECAL/HCAL/SPD/PS
  - Muon system



#### LHCb calorimeter system: SPD, PRS, ECAL, HCAL

#### Requirements:

- Energy/position measurement
- Identification of  $\gamma$ , electrons, hadrons
- High sensitivity
- Fast response (40MHz)



Maxi crane covere Front-end Crates

2X40 Tons

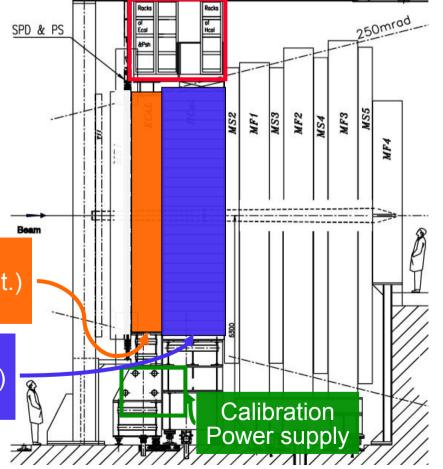
4 from LP. 12300 - 1- 180

**Power Supply** 

GANTRY.

## Upgraded LHCb calorimeter system: ECAL, HCAL

Expected dose in the electronics area  $\sim 100$ rad/fb<sup>-1</sup> (estimated from simulations)


2X40 Tons

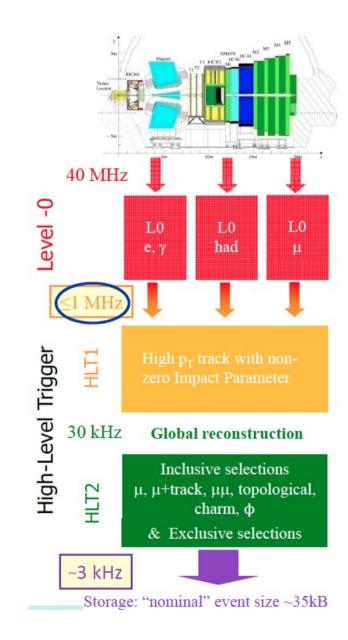
## from I.P. 12300 \_\_\_\_\_ 180

- SPD/PS/Lead are removed
  - Trigger
    - No real need with HLT-upgrade
  - Particle identification
    - Compensated by better tracking
    - Calorimeter resolution should improve
    - ECAL calibration easier without PS

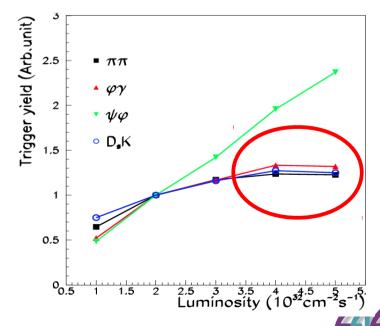
Common
Front-end

HCAL
Tiles (Iron-scint.)
1488 cells

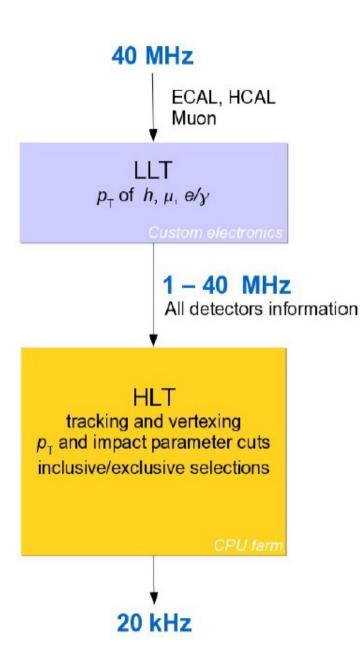



Maxi crane covere Front-end Crates

**Power Supply** 


GANTRY.




#### The current trigger



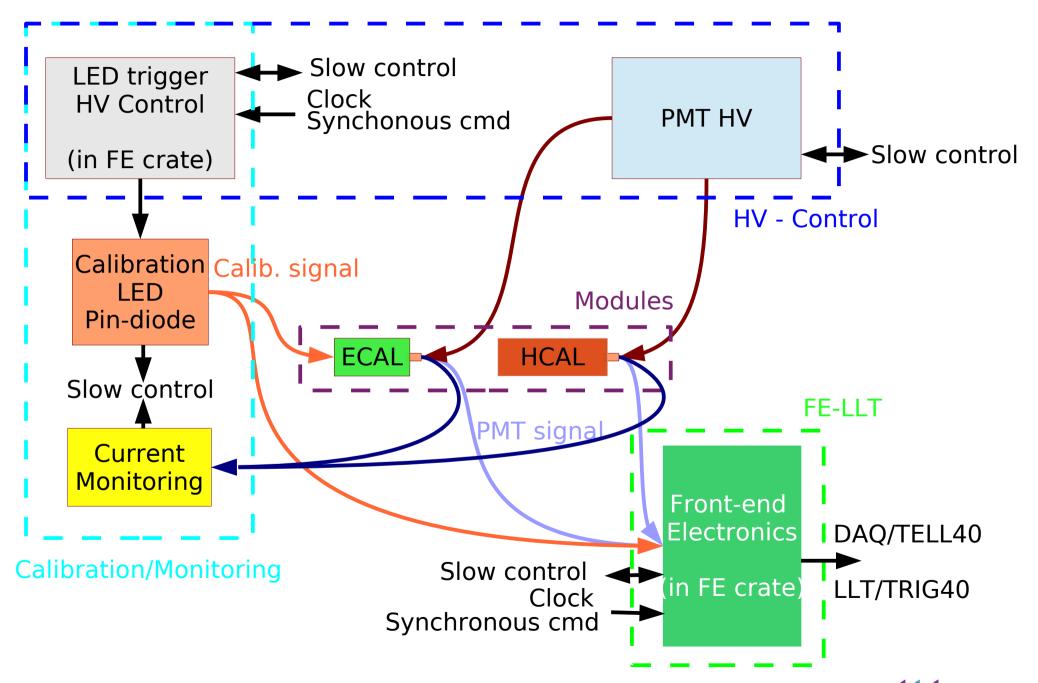
- The acquisition rate is limited to 1MHz
  - Interaction rate (~12MHz) is reduced to 1MHz
     by a hardware trigger (L0)
    - L0 decision based on
      - High Pt particles (Calo and Muon)
        - Electrons, photons, hadrons
        - Muons
- The 1MHz « bottleneck » is an efficiency limitation for the detector if we want to run at a high instantaneous luminosity
  - Especially for hadronic channels



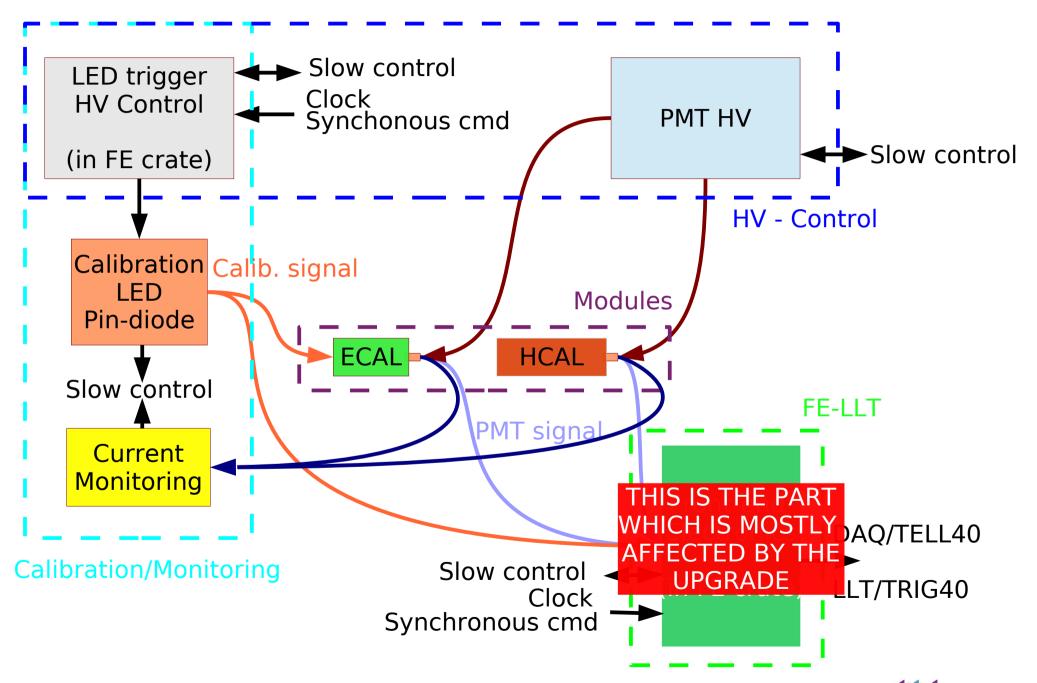
## The upgraded trigger



- Remove the L0
  - Fully software trigger
    - efficient : full detector information
    - Flexibility: can be easily adapted


- Still keep a low level trigger (LLT)
  - Adjust the bandwidth between 1 and 40MHz
  - LLT is similar to L0 with tunable thresholds
  - Requested by
    - Progressive increase of the PC farm size
    - Throttling mechanism in case of trouble
- Replacement of the front-end electronics and implementation of a 40MHz readout

#### Scope of the Upgrade of the calorimeter


- The upgrade consists of
  - running the experiment up to 2x10<sup>33</sup>cm<sup>-2</sup>.s<sup>-1</sup>
    - x5 with respect to max reached (2012)
  - Integrate up to L=50fb -1
- Scope of the upgrade what is (un)changed?
  - On the detector side:
    - most of the modules are kept  $\rightarrow$  some modules (inner region) replaced (LS3)
    - PMT → a reduction factor is applied on the gain to keep them alive
    - Cockcroft-Walton bases (and PS), signal cables, etc... are kept
    - Remove the SPD, PRS and Lead absorber
  - On the balcony:
    - Keep the crates, backplanes, power supplies,...
    - Replace the Front-end electronics (GBT 40MHz readout)
      - Make it compliant with the crates, power supplies, ...
    - Keep the L0Calo electronics → modified to be a LLT-Calo
  - Counting room:
    - TELL1 → TELL40 (GBT)
    - Slow control : GBT



# Schematics of the Calorimeter system



## Schematics of the Calorimeter system



#### Resources

- Manpower
  - The groups involved are
    - Barcelona, IHEP, INR, ITEP, Orsay, Annecy, Bologna
  - Barcelona: 2.5 FTE + physicist contribution → analog electronics
  - Orsay: ~2 physicistq + 2x0.5FTE (engineers) + punctual needs (CAO) → digital
  - IHEP/INR/ITEP: 1p+ for HV/Monitoring/calibration system 2p. For CW/PMT
  - Bologna: 1 engineer → optical mezzanine (GBT)
- A small group of (very motivated) people is involved
  - Very few physicists → many aspects are not covered (pile-up, reconstruction)
- Budget
  - The cost of the project has been presented to the funding agencies
    - France, Italy, Spain
  - Italian colleagues did not manage to get the support from their agencies.
    - The group from Bologna still wish to develop the mezzanine

#### Schedule

- TDR should be ready by the end of the year
- Front-end board
  - Analog
    - Choice of the technology (ASIC/COTS)
       → beginning of 2014
    - Final prototype → 2014-Q1
    - Analog PRR  $\rightarrow$  2014-Q3
  - Digital board
    - Final prototype (32 channels)
       → beginning of 2014
    - FEB PRR → 2015
- Control Board
  - Design starts from Autumn 2013
  - First prototype to be launched at the beginning of 2014
  - Control Board PRR → 2015

| Year | Energy            | Int. Lumi.           |
|------|-------------------|----------------------|
| 2010 | 7 TeV             | 37 pb <sup>-1</sup>  |
| 2011 | 2.76TeV           | 71 pb <sup>-1</sup>  |
| 2011 | 7 TeV             | 1.0 fb <sup>-1</sup> |
| 2012 | 8 TeV             | 2.2 fb <sup>-1</sup> |
| 2013 | LHC splice repair |                      |
| 2014 |                   |                      |
| 2015 | 13 TeV            |                      |
| 2016 | 25 ns<br>bunch    | >5 fb <sup>-1</sup>  |
| 2017 | crossing          |                      |
| 2018 | LHCb upgrade      |                      |
| 2019 |                   |                      |
| 2020 | 5-10 fb-1/year    |                      |
| 2021 |                   |                      |
| 2022 | LHC lumi upgrade  |                      |
| 2023 |                   |                      |
| 2024 | ♥                 |                      |

#### Summary

- Radiation effect → still in specifications up to 20fb<sup>-1</sup>
  - Studies ongoing to
    - Predict high luminosity effects (after a few years of running)
    - Cope with them → replacement of a few (inner) modules during LS3
  - Expect improvement from the upgraded monitoring system
- Baseline is no SPD/PS
  - Limited degradation of the particle identification
    - with a "pessimistic" MC sample
  - Far easier calibration of the calorimeter
  - Should be helped by the upgraded tracker
- Pile-up is a problem but should be fine in outer and middle regions
  - Performances slightly degraded in a limited acceptance
- Front-end electronics fully re-designed
  - Full software trigger → readout at 40MHz
  - PMT gain reduced by a factor 5
  - L0 Calo adapted for the LLT-Calo

Scope of the review

TDR to be written by the end of the year

