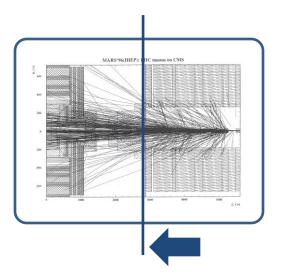
SIMULATION OF MACHINE BACKGROUNDS


Vadim TALANOV

CERN, TS/LEA Group

Institute for High Energy Physics, Protvino

Workshop on Experimental Conditions and Beam Induced Detector Backgrounds
CERN April 3 2008

MACHINE INDUCED BACKGROUND

"Products of secondary cascades, initiated by proton losses upstream of the LHC interaction points, that reach the zones of the experiments from the machine tunnel" [Chamonix XV]

First comprehensive review:

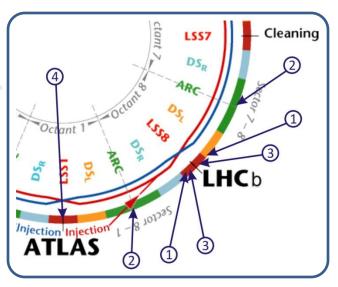

"Workshop on LHC Backgrounds"

CERN March 22 1996

What we think we know? What we need to know?

Something to remember about MIB:

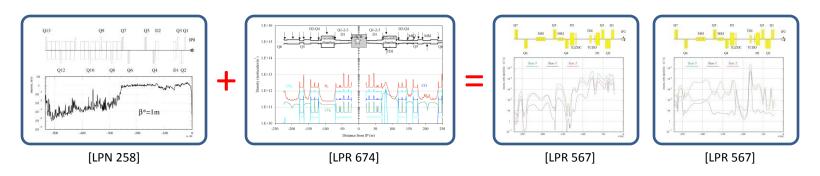
- Becomes visible with the very first bunch in the machine
- Scales with the beam intensity, not with luminosity at the IP
- Depends on: optics, apertures, filling scheme, residual gas pressure, cleaning efficiency etc. — and their combination
- IP1/5 were shielded from MIB "by default", IP2/8 were not!



BACKGROUND SOURCES AND ORIGINS

NOTE: in MIB, "loss" = "inelastic interaction"

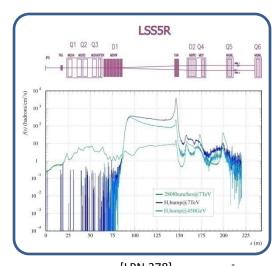
For a particular IP the sources can be grouped as:


- Beam-gas interactions in the LSS [1]
 - → Depends on gas pressure and composition
 - → Products have a direct line of sight into IP
- Elastic scattering in the cold sectors [2]
 - → Key issues: optics and apertures in the LSS

- Tertiary halo ("tails from collimation") out-scattered and not cleaned [3]
 - \rightarrow Depends on optics, apertures and cleaning inefficiency (must be < 10⁻³)
 - → Different for Beam 1 and 2 clear asymmetry of tertiary losses!
- \circ Collisions in the neighboring IPs [4] depends on the luminosity(!)
 - → Most probably relevant only for the case of the IP1 influence on IP2/8

BEAM-GAS LOSSES IN THE STRAIGHT SECTIONS

Layout + Optics = Flux profile at the scoring plane per 1 beam-gas interaction With the gas profile → Particle flux as a function of the loss distance to the IP

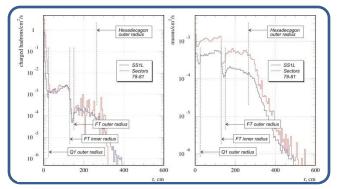


IR2/8(2002): $^{\sim}10^{13} \text{ H}_2 \text{ mol/m}^3 \rightarrow < 10^6 \text{ µ/s}$

Q: Why do we need to care?

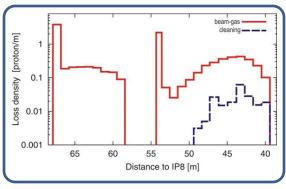
A: Pressure bump in the warm section

- "...a pressure of 10...100 times higher then the average density can exist locally for more than 100 hours..."
- → a few meters long pressure bump can produce the rate of the background compared to the whole LSS!

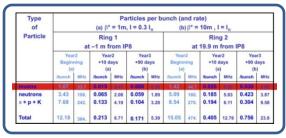

ELASTIC SCATTERING IN THE COLD ACRS

Depending on the resulting angle it gives a proton that may be lost at the next aperture limitation (D1-Q1 region@2001, now TCTs between D2 and D1)

→ Even before reaching the cleaning section!...

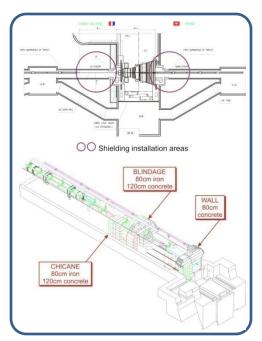

IR2/8: 5×10^{14} H₂ mol/m³ (dated 1996!) \rightarrow < 10^6 µ/s Total for beam-gas from LSS + cold arcs: few 10^6 µ/s (Compare to the 16 MHz event rate in the IP8)

Preliminary effect of the TCT (2004, IR1 and 13.5σ):



[LPN 371]

V. TALANOV


[LPR 500]

[CH XV]

"...up to 90% of the protons previously lost on the apertures in IR1 are now intercepted by TCTs..." — but at the price of the muon flux ~4 times higher at the cavern entrance...

BACKGROUND SHIELDING

[LPN 307]

Effect of the shielding: (for beam-gas in LSS8!)

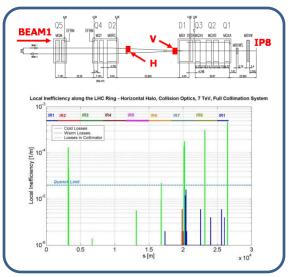
Charged hadrons flux reduced by factor 1.6-1.9 (50 above 25cm!), muon flux — 2.4-2.6, for the IP1/IP7 sides of LSS8

Specific to IR2/8:

No shielding at the tunnel entrance present till 2002!

Low luminosity → No TAS at Q1 → No shielding at TAS

In 2002: basing on the background calculations,


shielding installation areas around IP8 identified,
and a couple of configurations evaluated

FULL shielding: chicane + blindage, concrete wall (IP7 side); STAGED: reduced number of iron blocks

[D.Lacarrère, LHCb shield at the RB86 side]

COLLIMATION BACKGROUND

[LPR 953]

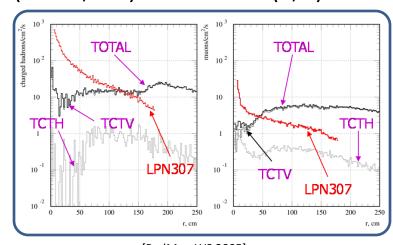
30h beam lifetime = 2.8×10^9 p/s@IR7

Beam halo calculated for:

- "Full collimation and ideal machine"
- Collimators in IR7 at 6σ/7σ
- Nominal beam parameters and optics (10m@IP8)
- o IR2/8: 1m (W jaws) long TCTs at $8.3\sigma(!)$

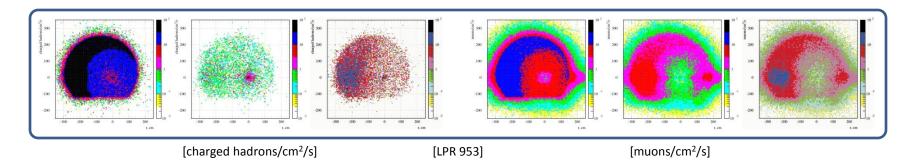
Cleaning inefficiency (IR7 side):

- Vertical halo: (0.84, 0.22)× 10⁻³ at TCT(V,H)
- \circ Horizontal halo: (0.003, 0.3)× 10⁻³ at TCT(V,H)


Particle flux at 1m from IP8:

Charged hadrons Muons

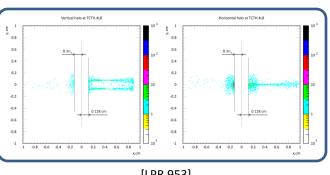
TCTV $5.7x10^6$ $1.7x10^6$


TCTH $8.3x10^4$ $4.7x10^4$

TOTAL 5.8x10⁶ 1.8x10⁶

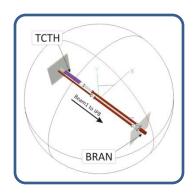
SHIELDING EFFICIENCY

"Staged" shielding configuration: already available and installed at IP8

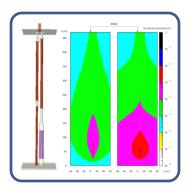


Vertical collimator TCTV at 73m:

	No shielding	Full	Staged
Charged hadrons	5.7×10^6	5.8×10 ⁴ [~1%]	8×10 ⁵ [14%]
Muons	1.7×10^6	4.9×10 ⁵ [29%]	7.6×10 ⁵ [45%]

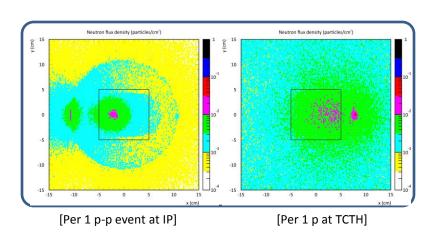

Q: TCT settings

TCTs in IR2/8 were closed to 8.30 → but does not it look like an overkill?...


[LPR 953]

BACKGROUND AT COLLISION RATE MONITORS

Luminosity monitors (BRANs):


- Installed in front of the D2 dipole, same region as the horizontal collimator TCTH
- In IR2/8 not shielded against background from the TCTH (no TAN absorber)

- → What will be signal/background ratio in the presence of the losses at TCTH?
- Background estimation: same loss maps as for the calculations above
- Compared to the signal at the BRAN from the p-p collisions in the IP

Signal/background ratio at the BRAN:

- For 16 MHz@IP8 and 1.5×10⁶ p/s@TCT
 10:1 (for neutrons)
- O What about:
 - \rightarrow IP2? (L = 3×10³⁰cm⁻²s⁻¹)
 - → Loss rates at the start-up?

CONCLUSION AND OUTLOOK

THE EFFECT OF THE BACKGROUND SOURCES IN IR2/8 WAS ESTIMATED:

- Beam-gas losses in the LSS: basing on the year 2002 numbers
- Losses in the cold arcs: some assumption that comes from 1996(!)
 - \rightarrow Total for the beam-gas from LSS + cold arcs: few 10⁶ µ/s
 - → Need to be updated with the new gas estimates and THE SHIELDING(!!!)
- ο <u>Tertiary losses at the TCTs:</u> most recent loss maps used \rightarrow few 10⁶ μ/s
 - → The performance of the IR2/8 shielding estimated for this source
 - → Charged hadrons: 99% efficiency, muons: reduction factor of 2-3
 What are the start-up/optimal settings for the TCTs in IR2/8?!
- Background at the Collision Rate Monitors:
 - → Critical for the luminosity measurement in IP2/8
 - → **Dramatically** depends on the rate of the losses at the TCTs...