Machine-Induced Background in the Forward Experiments

TOTEM ATLAS ALFA
 LHCf
 FP420

M. Deile
CERN PH-TOT

with contributions from
P. Grafström, D. Macina, F. Roncarolo

The Experiments

The Experiments: TOTEM

Hybrid with "edgeless" Si detector

RP 147
RP 220

Same configuration on the other side of IP5

The Experiments: ALFA (IP1)

Top view:

Same configuration on the other side of IP1

The Experiments: LHCf (IP1)

The Experiments: FP420 (IP1 and IP5)

FP420 R\&D Project

Four proton spectrometers proposed: at $\sim 420 \mathrm{~m}$ from IP1 and IP5, beam1 and beam2

Two (or three) stations for each spectrometer
Two pockets for each station: tracking and timing detectors

Mechanical design based on movable "Hamburg Pipe":

Types of Background

Characteristics:

1. Beam halo

from distant beam-gas interactions, betatron and momentum cleaning inefficiency: protons parallel to the beam; look like signal protons; reducible only by left-arm / right-arm coincidence scales with beam current; optics play a role.
2. Local beam-gas interaction products:
reducible by cuts on: track angle, hit multiplicity scales with beam current (but also the rest-gas density changes).
3. Beam-Beam background from interactions in the IP:

- diffractive proton component
directly reaching detectors or showering on beam pipe
- inelastic component
randomised and softened by secondary interactions with machine:
reducible by cuts on: track angle, hit multiplicity
scales with luminosity.

Running Conditions

	TOTEM	ALFA	LHCf	FP420
Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	$10^{28} \div 10^{33}$	10^{27}	$10^{29} \div 10^{30}$	$10^{33} \div 10^{34}$
k bunches	$43 \div 2808$	43	43	2808
N protons per bunch	$(1 \div 11.5) \times 10^{10}$	10^{10}	$(1 \div 4) \times 10^{10}$	$(4 \div 11.5) \times 10^{10}$
$\beta^{*}[\mathrm{~m}]$	$0.5 \div 1535$ $($ different physics $)$	2625	$2 \div 11$	0.5
min. det.-beam approach	$\sim 10 \div 15 \sigma$	$\sim 10 \div 15 \sigma$	N/A	15σ

Beam Halo: TOTEM

From collimation group: Betatron cleaning inefficiency seen at RP 220 for $\beta^{*}=0.5 \mathrm{~m}$

Probability of hit in RP detector per lost proton:

horizontal RP detector	$\mathrm{f}_{\text {halo }}=1.3 \mathrm{kHz}$ $=4.2 \times 10^{-5} / \mathrm{b}$	$\mathrm{f}_{\text {coinc }}=0.04 \mathrm{~Hz}$ $\mathrm{P}=1.4 \times 10^{-6}$

Beam Halo: TOTEM

From Igor Bayshev (IHEP): Distant beam-gas collisions (arcs beyond opposite TAS)
(scaled from $\mathrm{k}=2808, \mathrm{~N}=1.15 \times 10^{11}, \mathrm{~L}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

- No data available for the $\beta^{*}=1540 \mathrm{~m}$ scenario yet \rightarrow for now only estimate by scaling.
- Background reduction by two-arm coincidence
- For selecting elastic events: collinearity cut

Beam Halo: ALFA

Simulations provided by Igor Bayshev, IHEP

$$
\begin{array}{|c|}
\hline k_{\text {bunch }}=43 \\
N=10^{10} \\
\Delta t_{\text {bunch }}=2.021 \mu \mathrm{~s} \\
\mathrm{~L}=10^{27} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \\
\hline
\end{array}
$$

beam lifetime contribution from vacuum:

- 100 hrs for momentum and betatron cleaning (MC \& BC)
- 1000 hrs for distant beam-gas collisions (arcs)
- accidental coincidence rate inside detector acceptance of about 9 Hz (elastic: 27 Hz)
- potentially dangerous since all mimicking small t

Beam Halo: ALFA

Beam halo rejection cuts

Exploit back-to-back signature of elastic events and vertex reconstruction
after vertex and acollinearity cuts still 140 k events survive!
(compared to 6.6 M elastic signal)

> irreducible background at small t in the luminosity region!
must be subtracted

Statistical Subtraction

- signal and irreducible background appear in asymmetric configurations: +/- and -/+
- pure background is also present in symmetric configurations +/+ and -/-
- the irreducible background can be calculated by inverting randomly (left/right) the vertical sign of the hits
- halo asymmetries can be corrected for using data
- free of MC, good systematics
- error contribution to $\Delta \mathrm{L} / \mathrm{L}: 1.1-1.5 \%$ (total error $\Delta \mathrm{L} / \mathrm{L}=2.8-3.2 \%$)

Beam-Halo: LHCf

Proton collisions with TCT during LHCf operation: 10 kHz but background for the detectors probably negligible:

- TCT (Tungsten, 1 m long, 10 interaction lengths) is thick enough to stop the beam-halo particles and the secondaries.
- The secondary particles produced in beam-halo / TCT collisions will not reach the LHCf detectors:
- Charged particles swept away by D1 magnet.
- Neutral particles collimated at TAS $(\mathrm{s}= \pm 20 \mathrm{~m}, 37 \mathrm{~mm}$ aperture $)$

- never calculated in detail but halo colliding with beam pipe estimated $\ll 20 \%$ (very conservative number)
- If needed, reduction by coincidences between the two arms and by reconstructing the π° invariant mass

Beam Halo: FP420

Halo from Distant Beam-Gas Scattering

10^{6} beam-gas interactions simulated along all the LHC cold regions
Distributions recorded at FP420 here are normalised for a beam-gas lifetime of 500h and compared to momentum cleaning beam halo normalised for an off-momentum beam lifetime of 150 h

Halo from local beam-gas scattering expected to be very small, but needs to be investigated.

Beam Halo: FP420

Halo from Momentum Cleaning

Off momentum particles surviving beam cleaning
Simulation of 2×10^{6} protons hitting momentum cleaning collimators.

FP420 is sensitive to off-momentum protons because of big dispersion (by design of the experiment).

Halo from betatron cleaning not shown but very small.

Local Beam-Gas Background: TOTEM

Simulation by V. Talanov:

- Simulate flux of particles in the RP station at 220 m generated by beam-gas interactions and subsequent collisions with machine elements content: particle ID, $x, y, \theta_{x}, \theta_{y}, E$, stat. weight, no time or correlation info
- $\quad \beta^{*}=1540 \mathrm{~m}, 156$ bunches, $1.15 \times 10^{11} \mathrm{p} / \mathrm{b}\left(\Rightarrow \mathrm{L}=2.4 \times 10^{29} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right)$
- done:
beam 1 from left TAS to right RP220 station LHC optics version 6.4RP220

Particles included: $\mathrm{p}, \mathrm{n}, \pi^{+}, \pi, \mathrm{e}^{+}, \mathrm{e}^{-}, \gamma$ with $\mathrm{E}_{\text {kin }}>100 \mathrm{keV}$

- distant interactions (before left TAS) not included.

Local Beam-Gas: TOTEM
 Analysis Strategy

- Get hits at $\mathrm{s}=220 \mathrm{~m}$
- Extrapolate to $\mathrm{s}=216 \mathrm{~m}$ using track angle information
- Calculate single-pot and 2-pot coincidence rates using detector geometry
- For γ and n GEANT4 simulation to assess interaction and detection probability

- Refine 2-pot angular cut with coincidence road:

Divide detector in groups of 32 strips à $66 \mu \mathrm{~m}(\sim 2 \mathrm{~mm})$

Include 2 neighbours into coincidence condition (determined by angular spread of signal p)

Local Beam-Gas: TOTEM

Reduction by Two-Unit Coincidence

$\mathrm{E}_{\text {kin }}$: Protons and Pions

all traversing the scoring plane

simple coincidence 216 mx 220 m pcoincidence

π^{+}coincidence

Local Beam-Gas: TOTEM
 Reduction by Two-Unit Coincidence

$\mathrm{E}_{\mathrm{kin}}$: Photons

all traversing the scoring plane

simple coincidence 216 mx 220 m

$\mathrm{E}<20 \mathrm{keV}$:
photons stopped by $200 \mu \mathrm{~m}$ Inconel window
$20 \mathrm{keV}<\mathrm{E}<100 \mathrm{keV}$:
photons create isolated hits;
fake tracks suppressed by majority coincidence in 5 planes per projection (u, v) within road width
$\mathrm{E}>100 \mathrm{keV}$:
photons create Compton e^{-}; above $1 \mathrm{MeV}: \mathrm{e}^{+} \mathrm{e}^{-}$pairs \rightarrow Tracks
Interaction probability taken into account for background trigger rate estimate.

Local Beam-Gas: TOTEM

Rate Evolution with Cuts

$\beta^{*}=1540 \mathrm{~m}, \mathrm{k}=156$ bunches, $\mathrm{N}=1.15 \times 10^{11} \mathrm{p} /$ bunch, 2 vert. +1 hori. detectors:

	p	n	π^{+}	π^{-}	e^{+}	e^{-}	γ
220 m pot	344 Hz	174 Hz	616 Hz	406 Hz	4630 Hz	3361 Hz	94.72 kHz
simple coinc. 216 x 220	307 Hz	131 Hz	479 Hz	289 Hz	75 Hz	122 Hz	10.17 kHz
coinc. within roads	303 Hz	129 Hz	385 Hz	220 Hz	21 Hz	14 Hz	3.90 kHz
with det. efficiency	303 Hz	13 Hz $($ all showers $)$	385 Hz	220 Hz	21 Hz	14 Hz	$<330 \mathrm{~Hz}$ $(95 \% \mathrm{CL})$

Total Single Arm Rate:

$$
0.9-1.3 \mathrm{kHz}=(5-7) \times 10^{-4} / \mathrm{b}
$$

No multiplicity cuts applied.
No simulation for $\beta^{*}=0.5 \mathrm{~m}$ scenario ($\mathrm{k}=2808, \mathrm{~N}=0.4 \times 10^{11} \mathrm{p} /$ bunch)
\rightarrow Results scaled with current, correcting also for higher gas density

Local Inelastic Beam-Gas Background: ALFA

Simulations provided by Igor Azhgirey, IHEP

The comparison of the rate of distant and local beam-gas background shows that the latter contribution can be neglected.

Beam-Gas Background: LHCf

MC simulation:

- geometry: includes the TAS and beam pipes from IP to +/-140 m.
- gas density: from LHC-project-Report 783
- Luminosity: $10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$\underset{\text { (Arm 1) }}{\gamma \text { Spectrum }}$

Beam-Gas: LHCf

Background Reduction

- Double arm coincidence

Expected gas density: $<\rho>\left(\mathrm{H}_{2}\right.$ equiv. $)=1.8 \times 10^{12} \mathrm{~m}^{-3}$ (at start-up)
\rightarrow Beam-gas collision rate: 16 Hz , Signal rate from p-p: 6 kHz
\rightarrow single arm: $\mathrm{S} / \mathrm{B}=375$, double arm: $\mathrm{S} / \mathrm{B}=10^{7}$
If gas density is higher: $\left\langle\rho>\left(\mathrm{H}_{2}\right.\right.$ equiv. $)=10^{14} \mathrm{~m}^{-3}$
\rightarrow single arm: $\mathrm{S} / \mathrm{B}=10$, double arm: $\mathrm{S} / \mathrm{B}=10^{4}$

- π^{0} Analysis

Reconstruct π^{0} from 2 photons In case of high residual gas density $\left(\mathrm{H}_{2}\right.$ equiv. $\left.=10^{14} \mathrm{~m}^{-3}\right)$:
$\mathrm{S} / \mathrm{B}=10$ for single photons, $\mathrm{S} / \mathrm{B}=120$ for π^{0}.

Beam-Beam Background: TOTEM

Note: This is based on an old simulation from 2003 with limited information.
New data are available, but not yet analysed.

Source:
N. Mokhov et al.: FERMILAB-Conf-03/086 and LHC Project Report 633

Simulation of background at $L=10^{33} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$ from:

- pp in IP5 (minimum bias with DPMJET)
- beam-gas scattering: contributes $0.1 \%-1 \%$

Information available:

- fluxes of charged hadrons, neutrons, electrons, photons
averaged over Si detectors at:
145 m (vertical), 149 m (vertical), 220 m (vertical), 220 m (horizontal); but no angle or energy distributions at these positions;
- angular distributions at TAN to study efficiency of angular cuts

Beam-Beam Background: TOTEM

Subtract peak of diffractive protons ($|\mathrm{y}|<2 \mathrm{~mm}$) (signal for TOTEM) to obtain pure background.

Inversely: accepting only diffractive region cuts background rate by factor 10^{-2}.

Beam-beam background rate $[\mathrm{MHz}]$ for 1 horizontal detector at $L=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$:

	ch. hadrons	n	$\mathrm{e}+-$	γ	total
before cuts	3.7	1.5	19.1	155.8	180.1
after angular cuts and effic.	$0.56-2.48$	$0.0009-0.004$	$0.038-0.09$	$0.005-0.45$	$0.6-3.0$
Selecting diffract. region					$0.006-0.03$

Beam-Beam Background: LHCf

Background produced by particles from p-p collisions in IP1 interacting with beam pipe.

The S / N of this background is
>10 for photons with $\mathrm{E}>100 \mathrm{GeV}$ and
>140 for photons with $\mathrm{E}>350 \mathrm{GeV}$.
\rightarrow Not a problem.

Beam-Beam Background: FP420

Protvino simulations (preliminary) for a total inelastic cross section of 80 mb

- track diffractive protons losses on MB. B11 (last dipole upstream FP420)
- produce secondary particles and store their distribution at FP420 entrance

e 0.015 neutrons / bx with $\mathrm{E}>14.5 \mathrm{MeV}$
24 photons / bx
e with $\mathrm{E}>10 \quad \mathrm{MeV}$

Manchester BDSIM simulations (preliminary) for a total cross section of 100 mb

- track diffractive protons losses along the line from IP to MB. B11
- produce secondary particles and store their distribution at FP420 entrance


```
0.11 neutrons / bx
photons and charged particles to be assessed
```


TOTEM Summary: Background Estimates

Rates for RP 220:

	$\begin{aligned} & \mathrm{L}=10^{29} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \\ & \left(\mathrm{k}=156, \mathrm{~N}=7.4 \times 10^{10} \mathrm{p} / \mathrm{b}\right) \\ & \beta^{*}=1540 \mathrm{~m} \\ & \mathbf{2} \text { vertical + } \mathbf{1} \text { horizontal detector } \end{aligned}$	$\begin{aligned} & \mathrm{L}=10^{33} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \\ & \left(\mathrm{k}=2808, \mathrm{~N}=4 \times 10^{10} \mathrm{p} / \mathrm{b}\right) \\ & \beta^{*}=0.5 \mathrm{~m} \\ & \mathbf{1} \text { horizontal detector only } \end{aligned}$
Local Beam-Gas (single arm)	before cuts: $246 \times 10^{-4} / \mathrm{b}$ (b=bunch) (hadrons: $3.6 \times 10^{-4} / \mathrm{b}$) after cuts: $3.0 \times 10^{-4} / \mathrm{b}$ $2^{\text {nd }}$ background	before cuts: $248 \times 10^{-4} / \mathrm{b}$ after cuts: $1.9 \times 10^{-4} / \mathrm{b}$ $2^{\text {nd }}$ leading background
Beam-Beam (single arm)	before cuts: $177 \times 10^{-4} / \mathrm{b} \quad$ (?) after cuts: $(0.4 \div 2) \times 10^{-4} / \mathrm{b}(?)$ $3^{\text {rd }}$ background	before cuts: $6 / \mathrm{b}$ after cuts: $(0.02 \div 0.1) / \mathrm{b}$ (?) $1^{\text {st }}$ leading background
Beam Halo (single arm)	Betatron cleaning: $1 \times 10^{-4} / \mathrm{b}$ distant beam-gas: $11 \times 10^{-4} / \mathrm{b}$ $1^{\text {st }}$ background	Betatron cleaning: $0.4 \times 10^{-4} / \mathrm{b}$ distant beam-gas: $22 \times 10^{-4} / \mathrm{b}$ $3^{\text {rd }}$ background
2-arm coincidence	($237 \div 289$) $\times 10^{-8} / \mathrm{bx}$	(0.0004 $\div 0.01) / \mathrm{bx}$
Signal (example)	$17 \times 10^{-4} / \mathrm{bx}$ (elastic events)	0.003 / bx (DPE events)
S/B	$(0.6 \div 0.7) \times 10^{3}$ improvable with collinearity cut	$7.5 \div 0.3$ selecting diffract. det. regions: factor 10^{4}

ALFA Summary: Background Estimates

	$\mathrm{L}=10^{27} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ $\left(\mathrm{k}=43, \mathrm{~N}=1 \times 10^{10} \mathrm{p} / \mathrm{b}\right)$ $\beta^{*}=2625 \mathrm{~m}$ 2 vertical detectors
Local Beam-Gas	negligible
Beam-Beam	negligible
Beam Halo (mainly distant beam-gas)	2-arm coincidence: 9 Hz
Signal (elastic events)	27 Hz
S/B before cuts	3
S/B after vertex \& collin. cuts, before statistical bg reconstruction	50
contribution to $\Delta \mathrm{L} / \mathrm{L}$	$1.1-1.5 \%$

LHCf Summary: Background Estimates

	$\mathrm{L} \sim 10^{29} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ $\left(\mathrm{k}=43, \mathrm{~N}=1 \times 10^{10} \mathrm{p} / \mathrm{b}\right)$ $\beta^{*}=11 \mathrm{~m}$
Local Beam-Gas (single arm)	$\mathrm{S} / \mathrm{B}=375$
Beam-Beam	$\mathrm{S} / \mathrm{B}>140$ for $\mathrm{E}_{\gamma}>350 \mathrm{GeV}$
Beam Halo (single arm)	$\mathrm{S} / \mathrm{B} \gg 5$ (improvable by π^{0} reconstr.)
Double-arm coincidence	$\mathrm{S} / \mathrm{B} \gg 2.5 \times 10^{3}$

FP420 Summary: Background Estimates

$$
\begin{gathered}
\mathrm{L} \sim 10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \\
\left(\mathrm{k}=2808, \mathrm{~N}=11.5 \times 10^{10} \mathrm{p} / \mathrm{b}\right) \\
\beta^{*}=0.5 \mathrm{~m}
\end{gathered}
$$

	IP1	IP5
Halo from distant beam-gas (single arm)	0.1 / b	0.1 / b
Halo from momentum cleaning (single arm)	$\begin{aligned} & \text { B1: } 7 \times 10^{-4} / b \\ & \text { B2: } 4 \times 10^{-2} / b \end{aligned}$	$\begin{gathered} \mathrm{B} 1:<10^{-5} / \mathrm{b} \\ \mathrm{~B} 2: 8 \times 10^{-4} / \mathrm{b} \end{gathered}$
Halo from betratron cleaning (single arm)	negligible	
Beam-Beam: showers from diffractive protons (single arm) prelimin		
Local beam-gas (single arm)	small, to be studied	

Background Measurements, Data Exchange

Common to all forward experiments:

- single-beam runs
- non-colliding bunches in two-beam operation
would be useful to identify beam-gas + beam-halo backgrounds.
- To be provided to the machine: trigger rates
- Desired from the machine:

1. BLM data
2. collimator positions
3. machine vacuum measurements
4. BPM data
5. Optics information, beam quality information (bunch sizes, emittances etc.)

Summary

- Backgrounds are managable.

At $\mathrm{L}<10^{29} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ halo from distant beam-gas scattering is dominant At $\mathrm{L}>10^{29} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \quad \mathrm{p}-\mathrm{p}$ induced background takes over

- Not all studies are completed.
- Comparisons between forward experiments should be extended.
- Signal exchange schemes are not yet at a finalised level.

Appendix

TOTEM: Background Measurements, Data Exchange

- to be provided to the machine:

1. RP detector and coincidence rates (monitored at least at 1 Hz):
e.g. (left top \& right top) compared with (left top \& right bottom)
to subtract beam-gas and beam halo backgrounds
But: detectors retracted and off during injection;
2. Radiation monitors (always on; can see injection anomalies; read out every 20 s)

Interpretation of the rates observed will need experience.

- needed from the machine:

1. BLM data
2. collimator positions
3. machine vacuum measurement
4. BPM data

Acceptable in terms of:

- luminosity variations in time: luminosity monitored by TOTEM, varies anyway within a fill (factor ~ 3) \rightarrow not problematic
- satellite bunches: problematic particularly with zero crossing-angle
- bad vacuum conditions in IR: to be avoided

ALFA: Background Measurements, Data Exchange

- to be provided to the machine:

RP trigger rates (single arm) are a good measure of beam halo
But: detectors retracted and off during injection;

- needed from the machine:

1. BLM data
2. collimator positions
3. machine vacuum measurement
4. BPM data

Acceptable in terms of:

- luminosity variations in time: luminosity monitored by ALFA, variations within factor ~ 3 not problematic
- satellite bunches: problematic particularly with zero crossing-angle $\rightarrow<1 \%$
- bunch-to-bunch variations: $<20 \%$
- bad vacuum conditions in IR: to be avoided

LHCf: Background Measurements, Data Exchange

- to be sent to the machine:
- trigger rate, also asynchronised to the bunch crossings
- energy distributions
- position distributions
- luminosity monitoring
- desired from the machine:
- nearby BLM data
- Radmon data from the TAN
- vacuum information
- Gas density 100 x higher than foreseen could be accepted.

FP420: Data exchange and Answers to Questionnaire

- Information that could be given to LHC

Installed detectors:
Q 3D silicon for tracking \rightarrow information about off-momentum beam halo particles
Q Gastof and Quartic for timing
instrumentation for alignment and calibration

- special BPMs with high accuracy
- fixed to LHC beam pipe
- movable with FP420 pipe
- Wire Position Sensors
- BLMs
- Information needed from LHC
- IR3 collimator positions (and efficiency?)
- beam

Q orbit stability, optics errors, bunch-to-bunch variations
Q emittances (beam size, momentum spread ...)

During injection, ramp and squeeze: detectors in retracted position
\rightarrow no danger due to unexpected losses/background
Physics results should not be affected by beam condition variations (e.g. bunch to bunch variations etc..) once such variations are known.

Reserve

Beam Halo Simulation from Collimation Group

Beam halo distributions at specific locations in the ring for $\beta^{*}=0.5 \mathrm{~m}$. Examples at 220 m :

For horizontal losses:

For vertical losses:

Beam Halo at $\boldsymbol{\beta}^{*}=0.5 \mathrm{~m}$

$\mathrm{k}=2808$ bunches
$\mathrm{N}=0.4 \times 10^{11} \mathrm{p} /$ bunch
$\tau=34 \mathrm{~h}$
$f_{\text {loss }}=0.9 \mathrm{GHz}$ (assume $f_{\text {loss, hori }}=f_{\text {loss vert }}$)
$\mathrm{f}_{\text {halo }}$ for correctly-shaped detectors at $10 \sigma+0.5 \mathrm{~mm}$:

	single arm	double arm
1 horizontal RP detector $\mathrm{P}=2 \times 10^{-6}$	$\begin{aligned} & \mathrm{f}_{\text {halo }}=1.8 \mathrm{kHz} \\ & =4.5 \times 10^{-5} / \mathrm{b} \end{aligned}$	$\begin{gathered} \mathrm{f}_{\text {coinc }}=0.08 \mathrm{~Hz} \\ =2 \times 10^{-9} / \mathrm{bx} \end{gathered}$
2 vertical RP detectors $\mathrm{P}=1 \times 10^{-6}$	$\begin{aligned} & \mathrm{f}_{\text {halo }}=0.9 \mathrm{kHz} \\ & =2.3 \times 10^{-5} / \mathrm{b} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {coinc }}=0.02 \mathrm{~Hz} \\ & =0.5 \times 10^{-9} / \mathrm{bx} \end{aligned}$
1 hori. + 2 vert. det. - overlap $\mathrm{P}=2.5 \times 10^{-6}$	$\begin{aligned} & \mathrm{f}_{\text {halo }}=2.3 \mathrm{kHz} \\ & =5.6 \times 10^{-5} / \mathrm{b} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {coinc }}=0.12 \mathrm{~Hz} \\ & =3.1 \times 10^{-9} / \mathrm{bx} \end{aligned}$

$\mathrm{E}_{\text {kin }}$: Protons and Neutrons

all traversing the scoring plane

simple coincidence 216 mx 220 m

n coincidence

estimated neutron - detector interaction probability: 0.5%

$\mathrm{E}_{\mathrm{kin}}$: Pions

all traversing the scoring plane

simple coincidence $216 \mathrm{~m} \times 220 \mathrm{~m}$ π^{*} coincidence

π^{+}coincidence

$\mathrm{E}_{\text {kin }}$: Electrons and Positrons

all traversing the scoring plane

simple coincidence 216 mx 220 m
e^{*} coincidence

Photons in Silicon

$\mathrm{E}<20 \mathrm{keV}$:
photons stopped by $200 \mu \mathrm{~m}$ Inconel window
$20 \mathrm{keV}<\mathrm{E}<100 \mathrm{keV}$: photons create isolated hits; fake tracks suppressed by majority coincidence in 5 planes per projection (u, v) within road width:
$\binom{5}{5}$ or $\binom{5}{4}$ in u
$\binom{5}{5}$ or $\binom{5}{4}$ in v
$\mathrm{E}>100 \mathrm{keV}$: photons create Compton e^{-}; above 1 MeV : $\mathrm{e}^{+} \mathrm{e}^{-}$pairs
\rightarrow Tracks

Beam-Gas Rate Evolution with Cuts

$\mathrm{k}=156$ bunches, $\mathrm{N}=1.15 \times 10^{11} \mathrm{p} /$ bunch (1 horizontal detector only):

	p	n	π^{+}	π^{-}	e^{+}	e^{-}	γ
220 m pot	131 Hz	68 Hz	223 Hz	196 Hz	2054 Hz	1392 Hz	38.86 kHz
simple coinc. 216 x 220	114 Hz	49 Hz	143 Hz	135 Hz	26 Hz	21 Hz	3.2 kHz
coinc. within roads	113 Hz	48 Hz	115 Hz	103 Hz	7 Hz	2 Hz	1.2 kHz
with det. efficiency	113 Hz	5 Hz (all showers)	115 Hz	103 Hz	7 Hz	2 Hz	$<100 \mathrm{~Hz}$ $(95 \% \mathrm{CL})$

Total Single Arm Rate:

$$
\begin{aligned}
& 340-440 \mathrm{~Hz} \quad \text { for } \mathrm{k}=156 \text { bunches, } \mathrm{N}=1.15 \times 10^{11} \mathrm{p} / \text { bunch } \\
& \left(=2 \times 10^{-4} / \mathrm{b}\right)
\end{aligned}
$$

No multiplicity cuts applied.

Backgrounds in T1/T2

available:

- \quad simple beam-gas simulation: Pythia $p(7 \mathrm{TeV})$-p(rest) interaction position distribution flat from -20 m to +15 m
- beam-gas rate from rest-gas densities (A. Rossi):
for 156 bunches à $1.15 \times 10^{11} \mathrm{p} / \mathrm{b}$:

Gas X	$\sigma(\mathrm{p}-\mathrm{X})[\mathrm{mb}]$	$\rho\left[\right.$ molec. $\left./ \mathrm{m}^{3}\right]$
H_{2}	94	1.2×10^{11}
CH_{4}	568	1.2×10^{10}
CO	840	3.4×10^{8}
CO_{2}	1300	4.2×10^{8}

Interaction rate: $\mathrm{kNc} / \mathrm{l}_{\mathrm{LHC}} \Sigma \sigma_{\mathrm{i}} \rho_{\mathrm{i}}=0.4 \mathrm{~Hz} / \mathrm{m}$ per beam
from left TAS (aperture limit) to right T2: $(20 \mathrm{~m}+14 \mathrm{~m}) \times 0.4 \mathrm{~Hz} / \mathrm{m}=13.6 \mathrm{~Hz}$ per beam missing:

- impact of more distant interactions
- full simulation with full geometry (shieldings etc.),

2 scoring planes: entrances of T1, T2;
details: particle energies, angles, bunch crossing information

- muon halo in CMS

Machine background

Luminosity:	10^{27}	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
LUCDD signal rate:	16 Hz	32 MHz
Muon rate	0.06 Hz	40 Hz
Hadron rate $>20 \mathrm{GeV}$ (hitting the TAS from the back)	$<50 \mathrm{~Hz}$	$<31 \mathrm{kHz}$

From a calculation by V. Talanov that gives beam gas background entering the ATLAS cavern.

It is assumed that only hadrons with $\mathrm{E}>20 \mathrm{GeV}$ can penetrate the TAS

LUCID

open issue: beam-gas background for LUCID

- The beam-gas background entering LUCID from the back has been estimated to be at a small level
- The beam gas entering LUCID from the front is presumably rather small (length ratio) but could be dangerous, since it is pointing to LUCID
- Can we get a background calculation for this contribution at a scoring plane of the LUCID front face ($\sim 17 \mathrm{~m}$)?

LHCf: Transverse projection in the TAN slot

