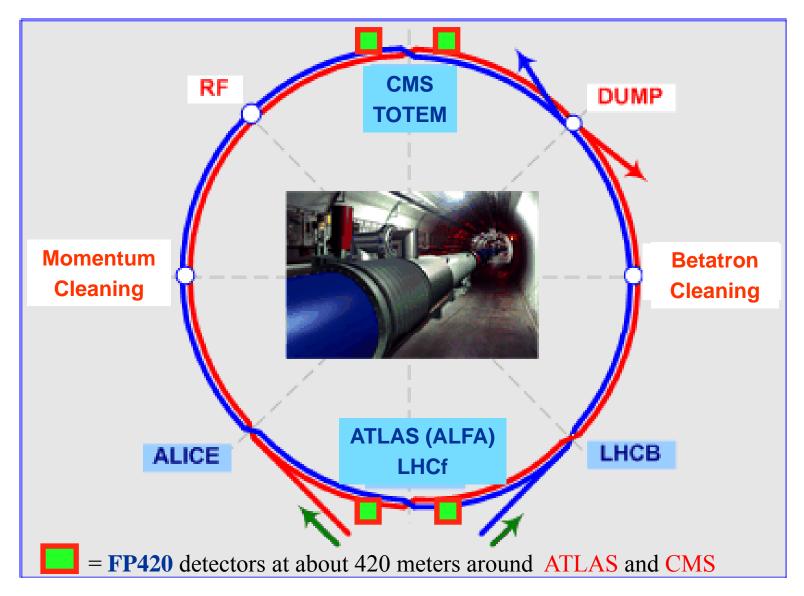


FP420 R&D Project

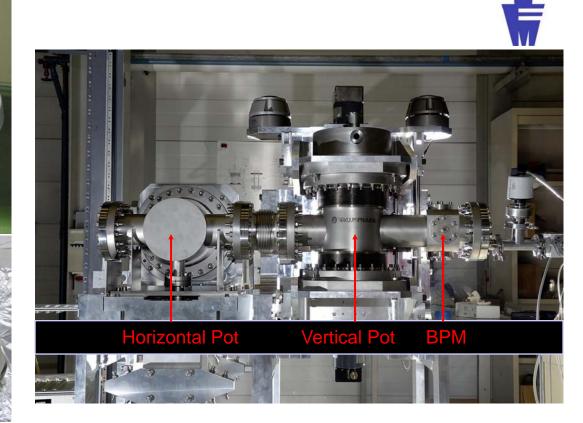

Machine-Induced Background in the Forward Experiments

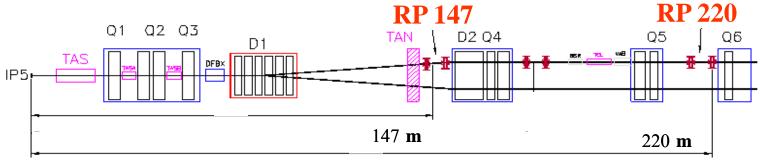
TOTEM ATLAS ALFA LHCf FP420

M. Deile CERN PH-TOT

with contributions from P. Grafström, D. Macina, F. Roncarolo

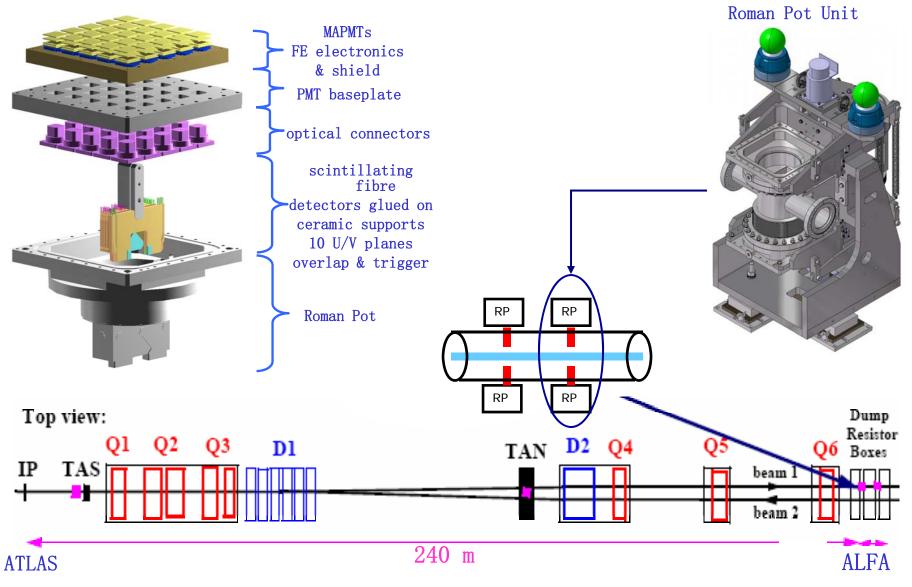
The Experiments




The Experiments: TOTEM

Hybrid with "edgeless" Si detector

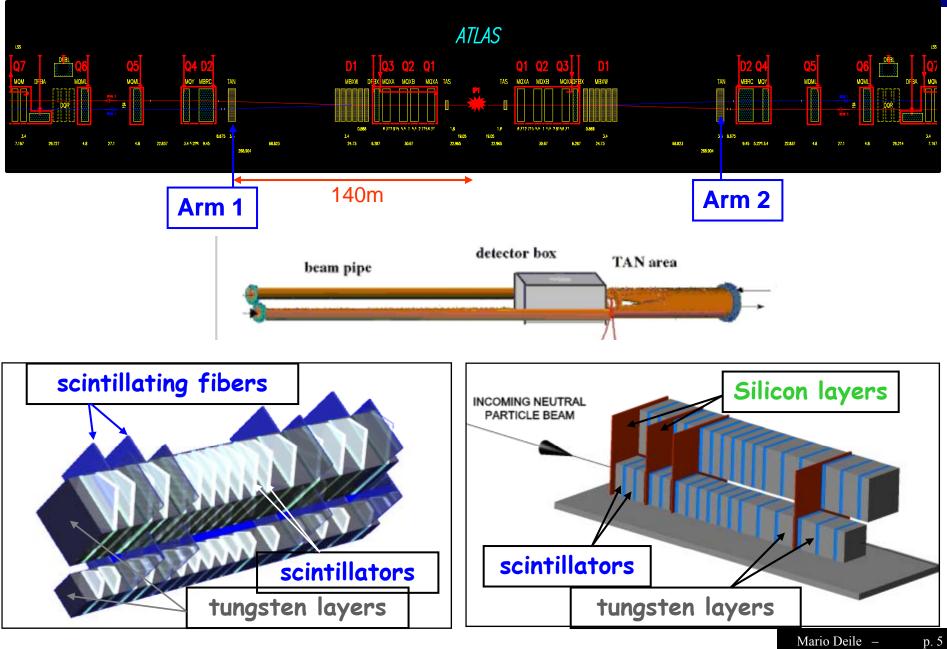
Ferrite



Same configuration on the other side of IP5

TOTEM

The Experiments: ALFA (IP1)



Same configuration on the other side of IP1

The Experiments: LHCf (IP1)

The Experiments: FP420 (IP1 and IP5)

Four proton spectrometers proposed: at ~420 m from IP1 and IP5, DS 1.9K beam1 and beam2 010 Two (or three) stations for each spectrometer MBA MBB MQML MBA MBB **BEAM 1** Two pockets for each station: **BEAM 2** tracking and timing detectors 2.407 2.409 Mechanical design based on 1.898 15.8667 29.96 29.96 movable "Hamburg Pipe": 171.3767 LVDT LVDT **Moving Pipe** 11 **STATION** Si Box Si Detector Gastof · T P 0 **Pockets Mobile Plate** Mechanical 34.45 mm stop Fix Plate Maxon Motor 12.5 Mario Deile – p. 6

FP420 R&D Project

Types of Background

Characteristics:

1. Beam halo

from distant beam-gas interactions, betatron and momentum cleaning inefficiency: protons parallel to the beam; look like signal protons; reducible only by left-arm / right-arm coincidence scales with beam current; optics play a role.

2. Local beam-gas interaction products:

reducible by cuts on: track angle, hit multiplicity scales with beam current (but also the rest-gas density changes).

3. Beam-Beam background from interactions in the IP:

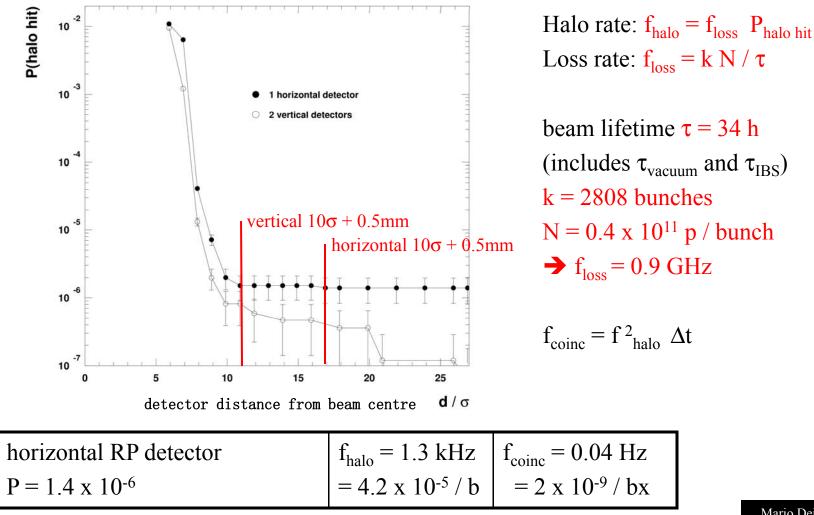
- diffractive proton component

directly reaching detectors or showering on beam pipe

- inelastic component

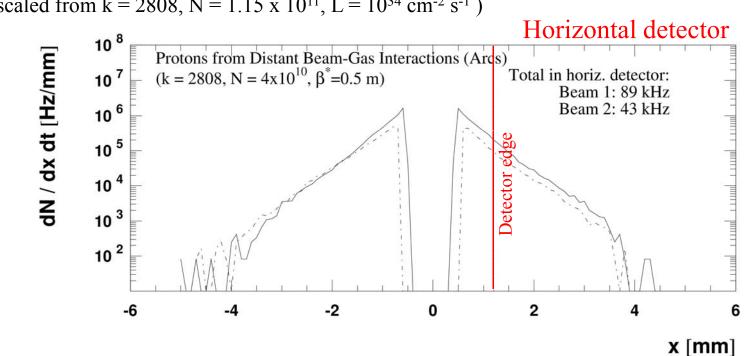
randomised and softened by secondary interactions with machine: reducible by cuts on: track angle, hit multiplicity scales with luminosity.

Running Conditions


	TOTEM	ALFA	LHCf	FP420
Luminosity [cm ⁻² s ⁻¹]	$10^{28} \div 10^{33}$	1027	$10^{29} \div 10^{30}$	$10^{33} \div 10^{34}$
k bunches	43 ÷ 2808	43	43	2808
N protons per bunch	$(1 \div 11.5) \ge 10^{10}$	10 ¹⁰	$(1 \div 4) \ge 10^{10}$	$(4 \div 11.5) \ge 10^{10}$
β* [m]	0.5 ÷ 1535 (different physics)	2625	2 ÷ 11	0.5
min. detbeam approach	~ 10 ÷ 15 σ	$\sim 10 \div 15 \sigma$	N/A	15 σ

Beam Halo: TOTEM

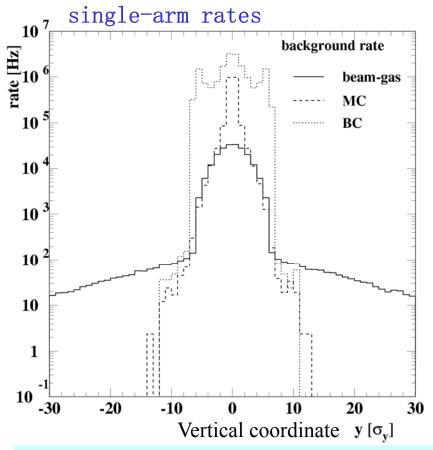
From collimation group: Betatron cleaning inefficiency seen at RP 220 for $\beta^* = 0.5$ m



Probability of hit in RP detector per lost proton:

Beam Halo: TOTEM

From Igor Bayshev (IHEP): Distant beam-gas collisions (arcs beyond opposite TAS)


(scaled from k = 2808, N = 1.15 x 10^{11} , L = 10^{34} cm⁻² s⁻¹)

- No data available for the $\beta^* = 1540$ m scenario yet \rightarrow for now only estimate by scaling.
- Background reduction by two-arm coincidence
- For selecting elastic events: collinearity cut

Beam Halo: ALFA

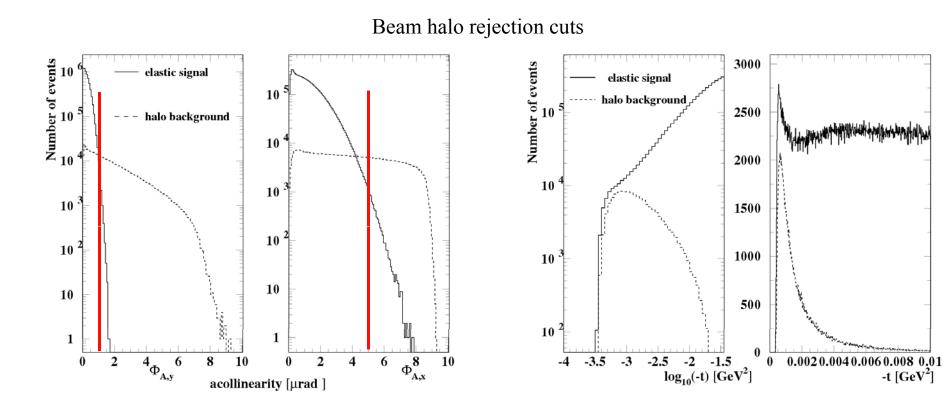
Simulations provided by Igor Bayshev, IHEP

$$k_{bunch} = 43$$
$$N = 10^{10}$$
$$\Delta t_{bunch} = 2.021 \mu s$$
$$L = 10^{27} s^{-1} cm^{-2}$$

beam lifetime contribution from vacuum:

- 100 hrs for momentum and betatron cleaning (MC & BC)
- 1000 hrs for distant beam-gas collisions (arcs)

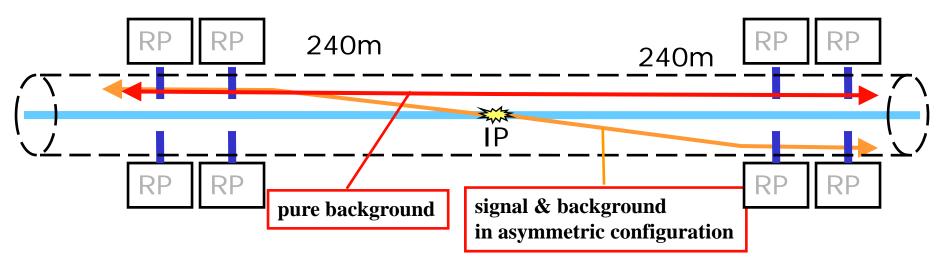
- accidental coincidence rate inside detector acceptance of about 9 Hz (elastic: 27 Hz)


- potentially dangerous since all mimicking small t

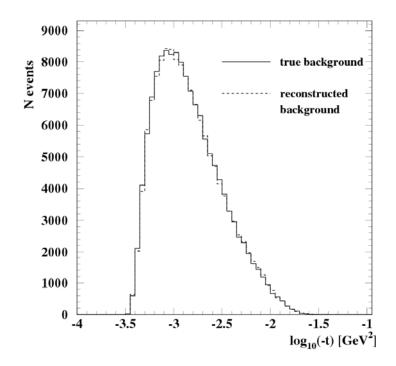
The ATLAS Experiment

ALFA - absolute luminosity for ATLAS

Beam Halo: ALFA


Exploit back-to-back signature of elastic events and vertex reconstruction

after vertex and acollinearity cuts still 140 k events survive! (compared to 6.6 M elastic signal) irreducible background at small t
in the luminosity region!

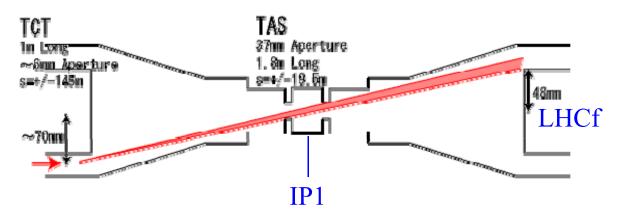

must be subtracted

Beam Halo: ALFA

Statistical Subtraction

- signal and irreducible background appear in asymmetric configurations: +/- and -/+
- pure background is also present in symmetric configurations +/+ and -/-
- the irreducible background can be calculated by inverting randomly (left/right) the vertical sign of the hits
- halo asymmetries can be corrected for using data
- free of MC, good systematics
- error contribution to $\Delta L/L$: 1.1-1.5 % (total error $\Delta L/L = 2.8-3.2$ %)

The ATLAS Experiment

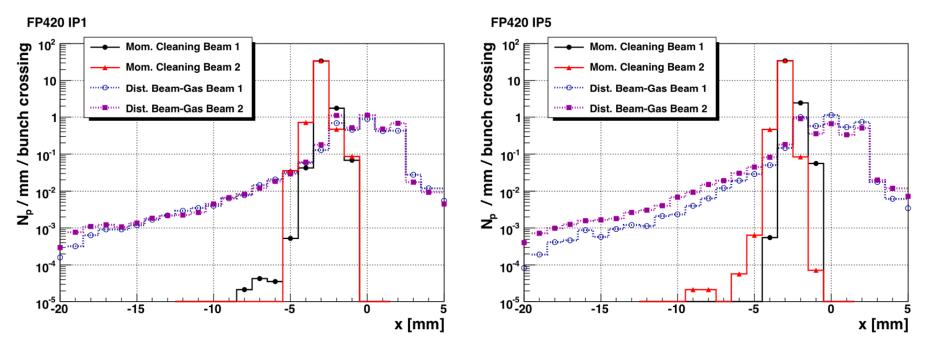

ALFA - absolute luminosity for ATLAS

Beam-Halo: LHCf

Proton collisions with TCT during LHCf operation: 10 kHz but background for the detectors probably negligible:

- TCT (Tungsten, 1 m long, 10 interaction lengths) is thick enough to stop the beam-halo particles and the secondaries.
- The secondary particles produced in beam-halo / TCT collisions will not reach the LHCf detectors:
 - Charged particles swept away by D1 magnet.
 - Neutral particles collimated at TAS (s = ± 20 m, 37 mm aperture)

- never calculated in detail but halo colliding with beam pipe estimated << 20 % (very conservative number)
- If needed, reduction by coincidences between the two arms and by reconstructing the π° invariant mass


Beam Halo: FP420

Halo from Distant Beam-Gas Scattering

FP420 R&D Project

10⁶ beam-gas interactions simulated along all the LHC cold regions

Distributions recorded at FP420 here are normalised for a **beam-gas lifetime** of **500h** and compared to momentum cleaning beam halo normalised for an **off-momentum** beam **lifetime** of **150h**

Halo from local beam-gas scattering expected to be very small, but needs to be investigated.

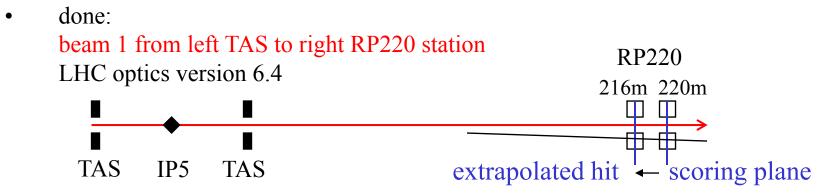
Beam Halo: FP420 Halo from Momentum Clean

Halo from Momentum Cleaning

Off momentum particles surviving beam cleaning

Simulation of 2 x 10^6 protons hitting momentum cleaning collimators. Distributions at 420 m from ATLAS (similar results around CMS): Beam 1 IP 1 Beam 1 ۳ Beam 2 ຂື ₁₀° Beam 2 10⁶ Detector 10⁵ 10⁵ 104 10⁴ 10³ 10³ 10² 10² 10 10 1 ^{2.8} 1-p/p [10⁻³] 2.4 1.6 1.8 2 2.2 2.6 -7 -3 -6 -5 -4 -2 -1 0 X [mm]

FP420 is sensitive to off-momentum protons because of big dispersion (by design of the experiment).


Halo from betatron cleaning not shown but very small.

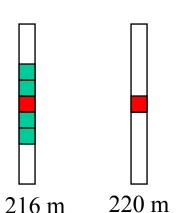
Local Beam-Gas Background: TOTEM

Simulation by V. Talanov:

- Simulate flux of particles in the RP station at 220 m generated by beam-gas interactions and subsequent collisions with machine elements content: particle ID, x, y, θ_x , θ_y , E, stat. weight, **no time or correlation info**
- $\beta^* = 1540 \text{ m}, 156 \text{ bunches}, 1.15 \text{ x } 10^{11} \text{ p/b} (\Rightarrow \text{L} = 2.4 \text{ x } 10^{29} \text{ s}^{-1} \text{ cm}^{-2})$

Particles included: p, n, π^+ , π^- , e^+ , e^- , γ with $E_{kin} > 100 \text{ keV}$

• distant interactions (before left TAS) not included.


Local Beam-Gas: TOTEM Analysis Strategy

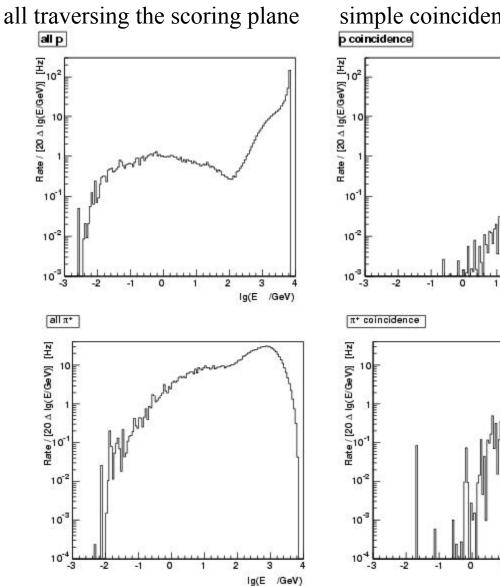
- Get hits at s = 220 m
- Extrapolate to s = 216 m using track angle information
- Calculate single-pot and 2-pot coincidence rates using detector geometry
- For γ and n GEANT4 simulation to assess interaction and detection probability

• Refine 2-pot angular cut with coincidence road:

Divide detector in groups of 32 strips à 66 μ m (~ 2 mm)

Include 2 neighbours into coincidence condition (determined by angular spread of signal p)

Overlap


Overlap

10σ beam

Local Beam-Gas: TOTEM Reduction by Two-Unit Coincidence

E_{kin}: **Protons and Pions**

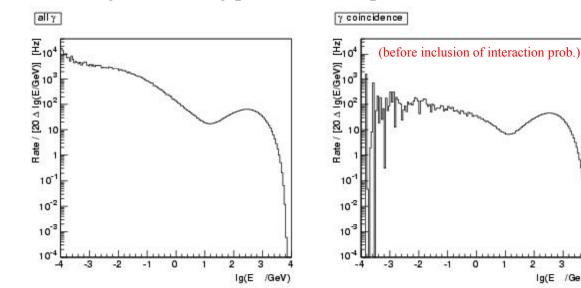
simple coincidence 216 m x 220 m

3

lg(E /GeV)

3

Ig(E /GeV)


2

2

Local Beam-Gas: TOTEM Reduction by Two-Unit Coincidence

E_{kin}: **Photons**

all traversing the scoring plane

simple coincidence 216 m x 220 m

Ig(E /GeV)

E < 20 keV:

photons stopped by 200 µm Inconel window

$20 \text{ keV} \le E \le 100 \text{ keV}$:

photons create isolated hits; fake tracks suppressed by majority coincidence in 5 planes per projection (u, v) within road width

E > 100 keV:

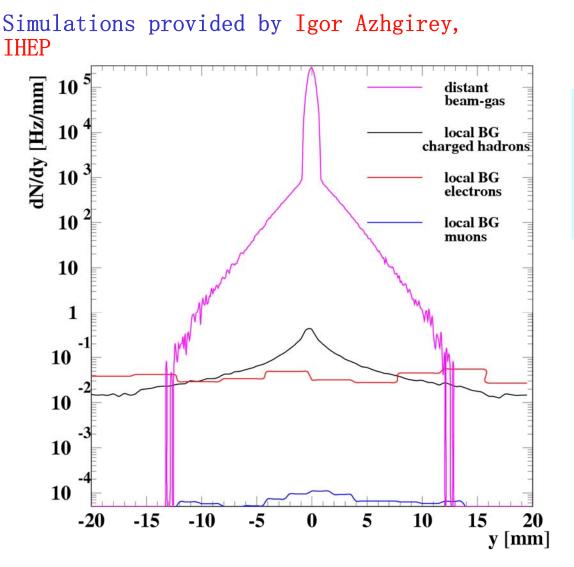
photons create Compton e⁻; above 1 MeV: e^+e^- pairs \rightarrow Tracks Interaction probability taken into account for background trigger rate estimate.

Local Beam-Gas: TOTEM Rate Evolution with Cuts

Rate Evolution with Cuts

 $\beta^* = 1540$ m, k = 156 bunches, N = 1.15 x 10¹¹ p / bunch, 2 vert. + 1 hori. detectors:

	р	n	π^+	π^-	e ⁺	e ⁻	γ
220 m pot	344 Hz	174 Hz	616 Hz	406 Hz	4630 Hz	3361 Hz	94.72 kHz
simple coinc. 216 x 220	307 Hz	131 Hz	479 Hz	289 Hz	75 Hz	122 Hz	10.17 kHz
coinc. within roads	303 Hz	129 Hz	385 Hz	220 Hz	21 Hz	14 Hz	3.90 kHz
with det. efficiency	303 Hz	13 Hz (all showers)	385 Hz	220 Hz	21 Hz	14 Hz	< 330 Hz (95% CL)


Total Single Arm Rate:

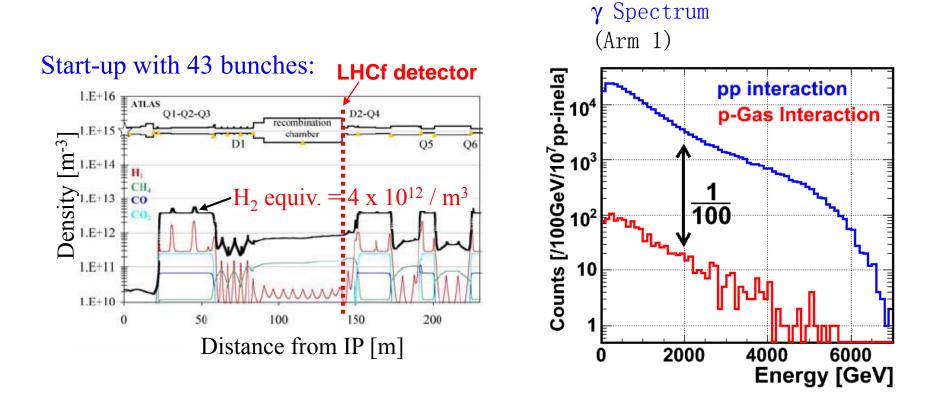
0.9 – 1.3 kHz = $(5 - 7) \times 10^{-4} / b$

No multiplicity cuts applied.

No simulation for $\beta^* = 0.5$ m scenario (k = 2808, N = 0.4 x 10¹¹ p / bunch) \rightarrow Results scaled with current, correcting also for higher gas density

Local Inelastic Beam-Gas Background: ALFA

The comparison of the rate of distant and local beam-gas background shows that the latter contribution can be neglected.


The ATLAS Experiment ALFA - absolute luminosity for ATLAS

Beam-Gas Background: LHCf

MC simulation:

- geometry: includes the TAS and beam pipes from IP to +/-140 m.
- gas density: from LHC-project-Report 783
- Luminosity: 10²⁹ cm⁻² s⁻¹

Beam-Gas: LHCf Background Reduction

• Double arm coincidence

Expected gas density: $<\rho>$ (H₂ equiv.) = 1.8 x 10¹² m⁻³ (at start-up)

- \rightarrow Beam-gas collision rate: 16 Hz, Signal rate from p-p: 6 kHz
- \rightarrow single arm: S/B = 375, double arm: S/B = 10⁷

If gas density is higher: $<\rho>$ (H₂ equiv.) = 10¹⁴ m⁻³ \rightarrow single arm: S/B = 10, double arm: S/B = 10⁴

• π^0 Analysis Reconstruct π^0 from 2 photons In case of high residual gas density (H₂ equiv. = 10¹⁴ m⁻³): S/B = 10 for single photons, S/B = 120 for π^0 . $S/B = 120 \text{ for } \pi^0$.

Invariant Mass [MeV]

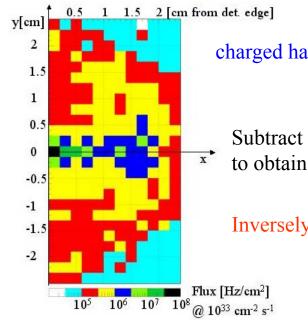
Beam-Beam Background: TOTEM

Note: This is based on an old simulation from 2003 with limited information. New data are available, but not yet analysed.

Source:

N. Mokhov et al.: FERMILAB-Conf-03/086 and LHC Project Report 633

Simulation of background at $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ from:


- pp in IP5 (minimum bias with DPMJET)
- beam-gas scattering: contributes 0.1% 1%

Information available:

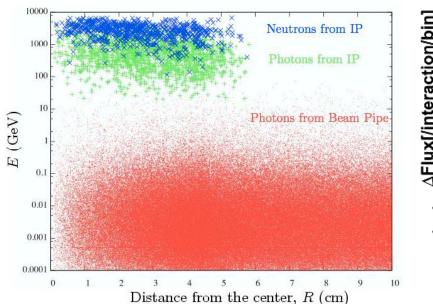
- fluxes of charged hadrons, neutrons, electrons, photons averaged over Si detectors at: 145 m (vertical), 149 m (vertical), 220 m (vertical), 220 m (horizontal); but no angle or energy distributions at these positions;
- angular distributions at TAN to study efficiency of angular cuts

Beam-Beam Background: TOTEM

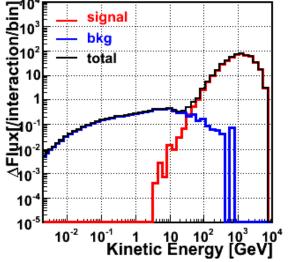
charged hadrons in horizontal detector at RP220

Subtract peak of diffractive protons (|y| < 2 mm) (signal for TOTEM) to obtain pure background.

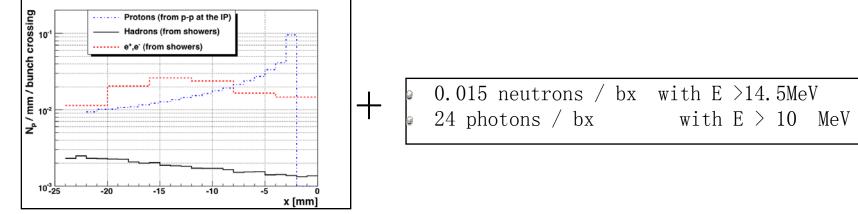
Inversely: accepting only diffractive region cuts background rate by factor 10⁻².


Beam-beam background rate [MHz] for 1 horizontal detector at $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$:

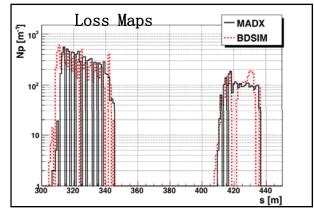
	ch. hadrons	n	e+-	γ	total
before cuts	3.7	1.5	19.1	155.8	180.1
after angular cuts and effic.	0.56 - 2.48	0.0009 - 0.004	0.038 - 0.09	0.005 - 0.45	0.6 - 3.0
Selecting diffract. region					0.006 - 0.03


Beam-Beam Background: LHCf

Background produced by particles from p-p collisions in IP1 interacting with beam pipe.



Energy distribution of photons


The S/N of this background is > 10 for photons with E > 100 GeV and > 140 for photons with E > 350 GeV. → Not a problem. Secondary showers from diffractive proton losses

<u>Protvino simulations (preliminary)</u> for a total inelastic cross section of 80mb
– track diffractive protons losses on MB.B11 (last dipole upstream FP420)
– produce secondary particles and store their distribution at FP420 entrance

<u>Manchester BDSIM simulations (preliminary)</u> for a total cross section of 100mb

- track diffractive protons losses along the line from IP to MB. B11
- produce secondary particles and store their distribution at FP420 entrance

0.11 neutrons / bx
 photons and charged particles to be assessed

TOTEM Summary: Background Estimates

Rates for RP 220:

	L = 10^{29} s ⁻¹ cm ⁻² (k = 156, N = 7.4 x 10^{10} p / b) $\beta^* = 1540$ m 2 vertical + 1 horizontal detector	$L = 10^{33} \text{ s}^{-1} \text{ cm}^{-2}$ (k = 2808, N = 4 x 10 ¹⁰ p / b) $\beta^* = 0.5 \text{ m}$ 1 horizontal detector only
Local Beam-Gas (single arm)	before cuts: 246×10^{-4} / b (b=bunch) (hadrons: 3.6×10^{-4} / b) after cuts: 3.0×10^{-4} / b 2^{nd} background	before cuts: 248 x 10 ⁻⁴ / b after cuts: 1.9 x 10 ⁻⁴ / b 2 nd leading background
Beam-Beam (single arm)	before cuts: $177 \times 10^{-4} / b$ (?) after cuts: $(0.4 \div 2) \times 10^{-4} / b$ (?) 3^{rd} background	before cuts: $6 / b$ (?) after cuts: $(0.02 \div 0.1) / b$ (?) 1^{st} leading background
Beam Halo (single arm)	Betatron cleaning: 1 x 10 ⁻⁴ / b distant beam-gas: 11 x 10 ⁻⁴ / b	Betatron cleaning: 0.4 x 10 ⁻⁴ / b distant beam-gas: 22 x 10 ⁻⁴ / b 3 rd background
2-arm coincidence	$(237 \div 289) \ge 10^{-8} / bx$	$(0.0004 \div 0.01) / bx$
Signal (example)	17 x 10 ⁻⁴ / bx (elastic events)	0.003 / bx (DPE events)
S/B	$(0.6 \div 0.7) \ge 10^3$ improvable with collinearity cut	$7.5 \div 0.3$ selecting diffract. det. regions: factor 10^4

See CMS+TOTEM common physics TDR (LHCC 2006-039/G-124) for details on S/B.

ALFA Summary: Background Estimates

	L = 10^{27} s ⁻¹ cm ⁻² (k = 43, N = 1 x 10^{10} p / b) $\beta^* = 2625$ m 2 vertical detectors		
Local Beam-Gas	negligible		
Beam-Beam	negligible		
Beam Halo (mainly distant beam-gas)	2-arm coincidence: 9 Hz		
Signal (elastic events)	27 Hz		
S/B before cuts	3		
S/B after vertex & collin. cuts, before statistical bg reconstruction	50		
contribution to $\Delta L/L$	1.1 – 1.5 %		

LHCf Summary: Background Estimates

	$\begin{array}{c} L \sim 10^{29} \ s^{\text{-1}} \ cm^{\text{-2}} \\ (k = 43, \ N = 1 \ x \ 10^{10} \ p \ / \ b) \\ \beta^* = 11 \ m \end{array}$	
Local Beam-Gas (single arm)	S/B = 375	
Beam-Beam	S/B > 140 for E_{γ} > 350 GeV	
Beam Halo (single arm)	S/B >> 5 (improvable by π^0 reconstr.)	
Double-arm coincidence	S/B >> 2.5 x 10 ³	

FP420 Summary: Background Estimates

 $\label{eq:loss} \begin{array}{l} L \sim 10^{34} \mbox{ s}^{-1} \mbox{ cm}^{-2} \\ (k = 2808, \mbox{ N} = 11.5 \mbox{ x} \mbox{ 10}^{10} \mbox{ p} \mbox{ / b}) \\ \beta^* = 0.5 \mbox{ m} \end{array}$

	IP1	IP5
Halo from distant beam-gas (single arm)	0.1 / b	0.1 / b
Halo from momentum cleaning (single arm)	B1: 7 x 10 ⁻⁴ / b B2: 4 x 10 ⁻² / b	B1: < 10 ⁻⁵ / b B2: 8 x 10 ⁻⁴ / b
Halo from betratron cleaning (single arm)	negl	igible
Beam-Beam: showers from diffractive protons (single arm) prelimin	diffract. p: ~ 0.4 / b ch. had.: ~ 0.04 / b n: ~ 0.1 / b e: ~ 0.3 / b γ : ~ 24	
Local beam-gas (single arm)	small, to be studied	

Background Measurements, Data Exchange

Common to all forward experiments:

- single-beam runs
- non-colliding bunches in two-beam operation

would be useful to identify beam-gas + beam-halo backgrounds.

- To be provided to the machine: trigger rates
- Desired from the machine:
 - 1. BLM data
 - 2. collimator positions
 - 3. machine vacuum measurements
 - 4. BPM data
 - 5. Optics information, beam quality information (bunch sizes, emittances etc.)

Summary

- Backgrounds are managable. At $L < 10^{29} \text{ s}^{-1} \text{ cm}^{-2}$ halo from distant beam-gas scattering is dominant At $L > 10^{29} \text{ s}^{-1} \text{ cm}^{-2}$ p-p induced background takes over
- Not all studies are completed.
- Comparisons between forward experiments should be extended.
- Signal exchange schemes are not yet at a finalised level.

Appendix

TOTEM: Background Measurements, Data Exchange

- to be provided to the machine:
 - RP detector and coincidence rates (monitored at least at 1 Hz):
 e.g. (left top & right top) compared with (left top & right bottom) to subtract beam-gas and beam halo backgrounds But: detectors retracted and off during injection;
 - 2. Radiation monitors (always on; can see injection anomalies; read out every 20 s)

Interpretation of the rates observed will need experience.

- needed from the machine:
 - 1. BLM data
 - 2. collimator positions
 - 3. machine vacuum measurement
 - 4. BPM data

Acceptable in terms of:

• luminosity variations in time: luminosity monitored by TOTEM,

varies anyway within a fill (factor \sim 3) \rightarrow not problematic

- satellite bunches: problematic particularly with zero crossing-angle
- bad vacuum conditions in IR: to be avoided

ALFA- absolute luminosity for ATLAS ALFA- absolute luminosity for ATLAS

• to be provided to the machine:

RP trigger rates (single arm) are a good measure of beam halo But: detectors retracted and off during injection;

- needed from the machine:
 - 1. BLM data
 - 2. collimator positions
 - 3. machine vacuum measurement
 - 4. BPM data

Acceptable in terms of:

- luminosity variations in time: luminosity monitored by ALFA, variations within factor ~ 3 not problematic
- satellite bunches: problematic particularly with zero crossing-angle \rightarrow < 1%
- bunch-to-bunch variations: < 20%
- bad vacuum conditions in IR: to be avoided

The ATLAS Experiment

LHCf: Background Measurements, Data Exchange

- to be sent to the machine:
 - trigger rate, also asynchronised to the bunch crossings
 - energy distributions
 - position distributions
 - luminosity monitoring
- desired from the machine:
 - nearby BLM data
 - Radmon data from the TAN
 - vacuum information
- Gas density 100 x higher than foreseen could be accepted.

FP420: Data exchange and Answers to Questionnaire

• Information that could be given to LHC

Installed detectors:

- \bigcirc 3D silicon for tracking \rightarrow information about off-momentum beam halo particles
- Gastof and Quartic for timing

instrumentation for alignment and calibration

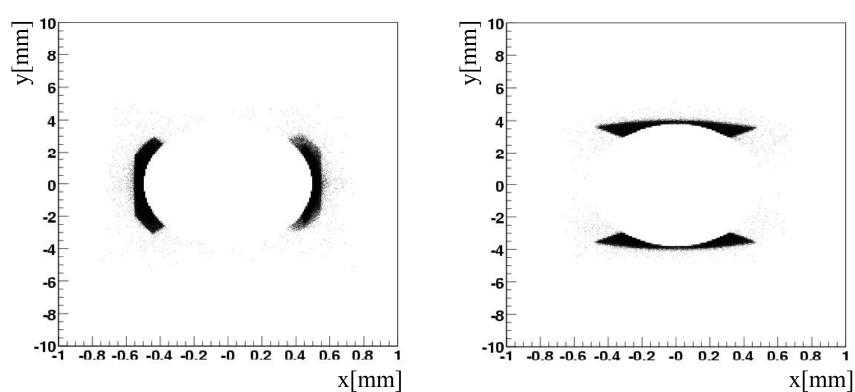
- special BPMs with high accuracy
 - fixed to LHC beam pipe
 - movable with FP420 pipe
- Wire Position Sensors
- BLMs

Information needed from LHC

- IR3 collimator positions (and efficiency?)
- 🔮 beam
 - orbit stability, optics errors, bunch-to-bunch variations
 - emittances (beam size, momentum spread ...)

During injection, ramp and squeeze: detectors in retracted position \rightarrow no danger due to unexpected losses/background

Physics results should not be affected by beam condition variations (e.g. bunch to bunch variations etc..) once such variations are known.


FP420 R&D Project

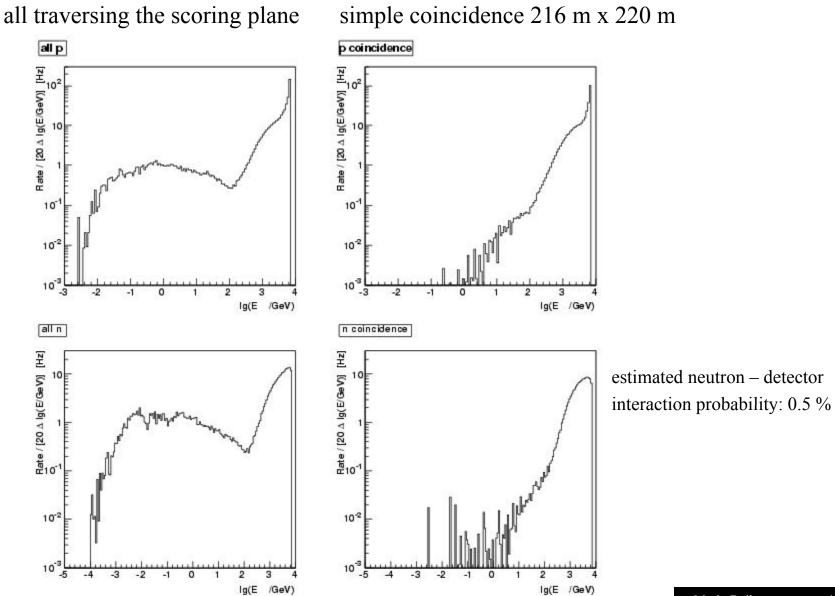
Reserve

Beam Halo Simulation from Collimation Group

Beam halo distributions at specific locations in the ring for $\beta^* = 0.5$ m. Examples at 220 m:

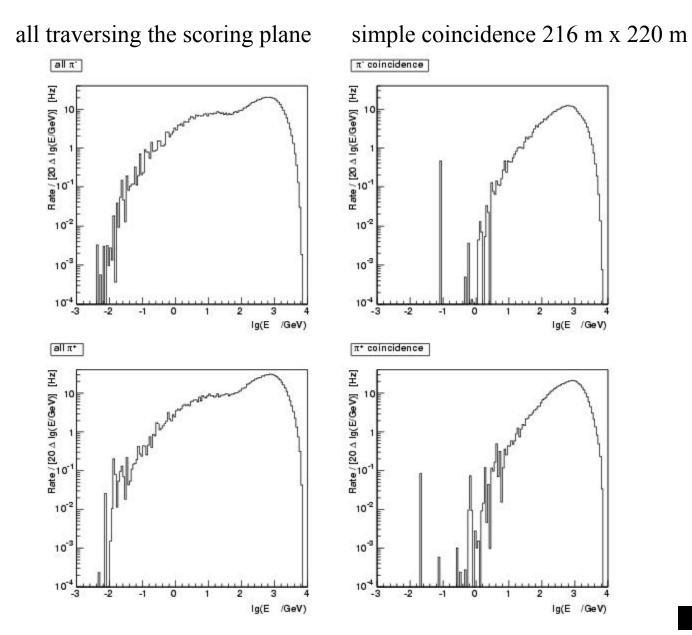
For horizontal losses:

For vertical losses:

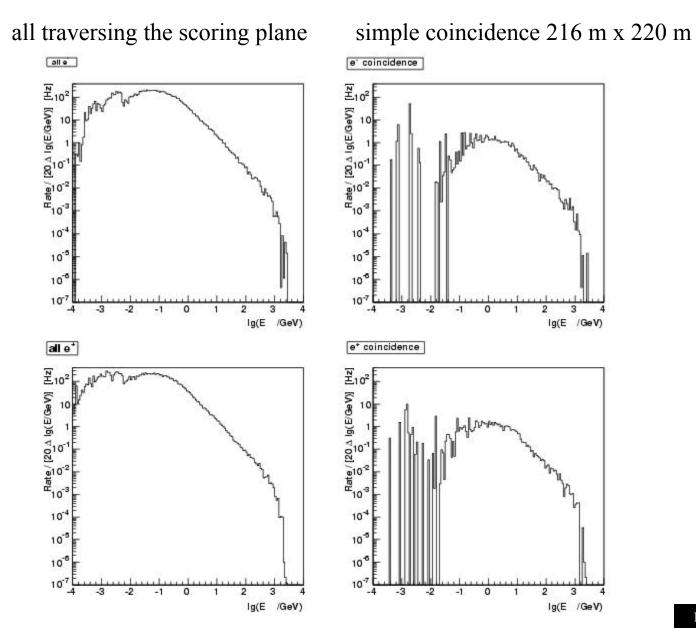

Beam Halo at $\beta^* = 0.5$ m

$$\label{eq:k} \begin{split} k &= 2808 \text{ bunches} \\ N &= 0.4 \ x \ 10^{11} \ p \ / \ bunch \\ \tau &= 34 \ h \end{split}$$

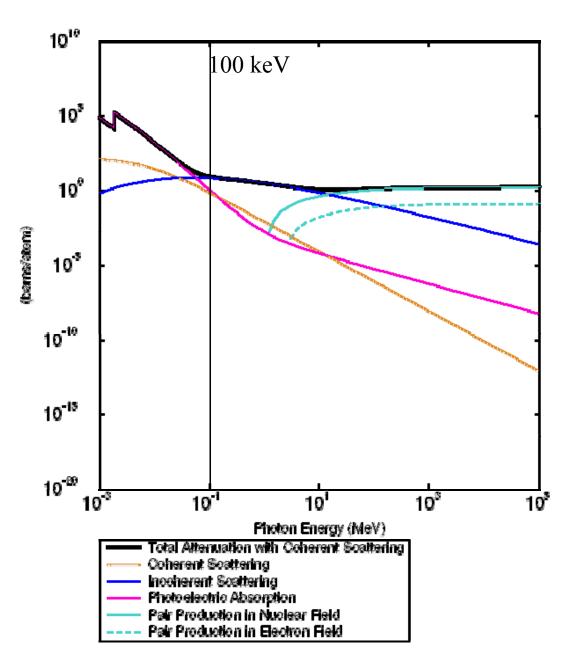
 $f_{loss} = 0.9 \text{ GHz} \text{ (assume } f_{loss,hori} = f_{loss vert} \text{)}$ f_{halo} for correctly-shaped detectors at 10 σ + 0.5 mm:


	single arm	double arm
1 horizontal RP detector	$f_{halo} = 1.8 \text{ kHz}$	$f_{coinc} = 0.08 \text{ Hz}$
$P = 2 \times 10^{-6}$	$= 4.5 \times 10^{-5} / b$	$= 2 \times 10^{-9} / bx$
2 vertical RP detectors	$f_{halo} = 0.9 \text{ kHz}$	$f_{coinc} = 0.02 \text{ Hz}$
$P = 1 \times 10^{-6}$	$= 2.3 \times 10^{-5} / b$	$= 0.5 \times 10^{-9} / bx$
1 hori. + 2 vert. det. – overlap	$f_{halo} = 2.3 \text{ kHz}$ = 5.6 x 10 ⁻⁵ / b	$f_{coinc} = 0.12 \text{ Hz}$
$P = 2.5 \times 10^{-6}$	$= 5.6 \times 10^{-5} / b$	$= 3.1 \times 10^{-9} / bx$

E_{kin}: **Protons and Neutrons**



Mario Deile – p. 43


E_{kin}: **Pions**

E_{kin}: Electrons and Positrons

Photons in Silicon

E < 20 keV:

photons stopped by 200 μm Inconel window

$20 \text{ keV} \le E \le 100 \text{ keV}$:

photons create isolated hits; fake tracks suppressed by majority coincidence in 5 planes per projection (u, v) within road width: $\binom{5}{5}$ or $\binom{5}{4}$ in u

 $\begin{pmatrix} 5\\5 \end{pmatrix}$ or $\begin{pmatrix} 5\\4 \end{pmatrix}$ in v

E > 100 keV:

photons create Compton e⁻; above 1 MeV: e⁺e⁻ pairs → Tracks

Beam-Gas Rate Evolution with Cuts

k = 156 bunches, $N = 1.15 \times 10^{11} \text{ p} / \text{bunch (1 horizontal detector only):}$

	p	n	π^+	π^{-}	e ⁺	e ⁻	γ
220 m pot	131 Hz	68 Hz	223 Hz	196 Hz	2054 Hz	1392 Hz	38.86 kHz
simple coinc. 216 x 220	114 Hz	49 Hz	143 Hz	135 Hz	26 Hz	21 Hz	3.2 kHz
coinc. within roads	113 Hz	48 Hz	115 Hz	103 Hz	7 Hz	2 Hz	1.2 kHz
with det. efficiency	113 Hz	5 Hz (all showers)	115 Hz	103 Hz	7 Hz	2 Hz	< 100 Hz (95% CL)

Total Single Arm Rate:

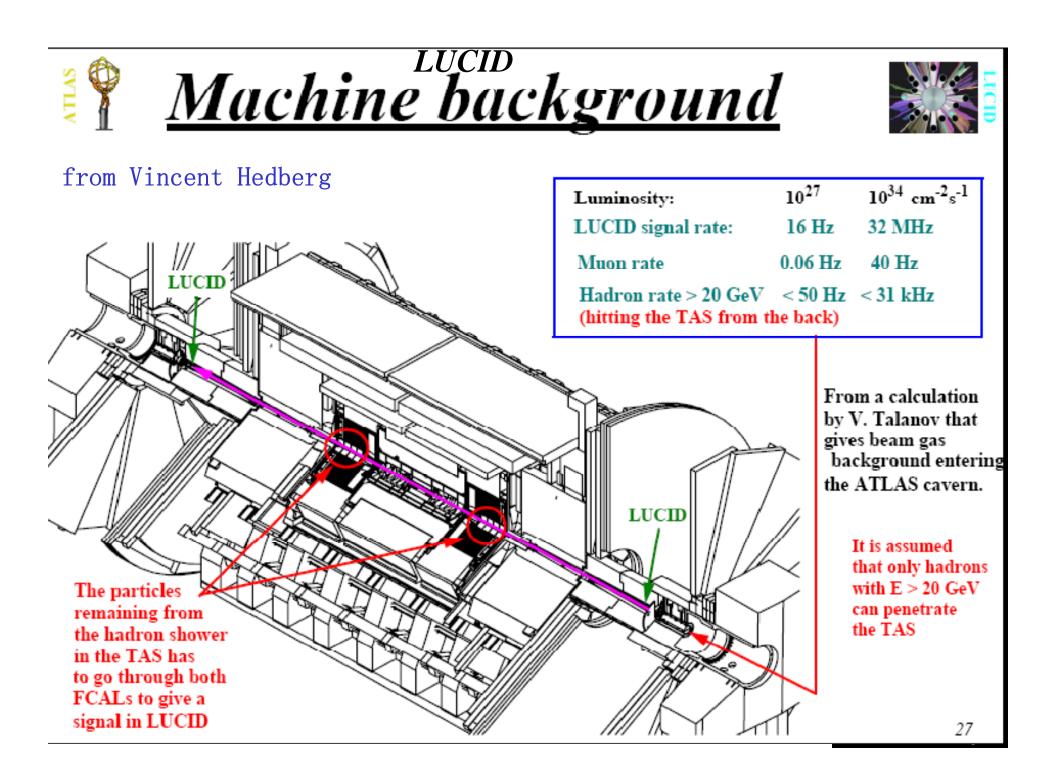
340 – 440 Hz for k = 156 bunches, N = 1.15 x 10^{11} p / bunch (= 2 x 10^{-4} / b)

No multiplicity cuts applied.

Backgrounds in T1/T2

available:

- simple beam-gas simulation: Pythia p(7TeV)-p(rest) interaction position distribution flat from -20 m to +15 m
- beam-gas rate from rest-gas densities (A. Rossi): for 156 bunches à 1.15 x 10¹¹ p/b:

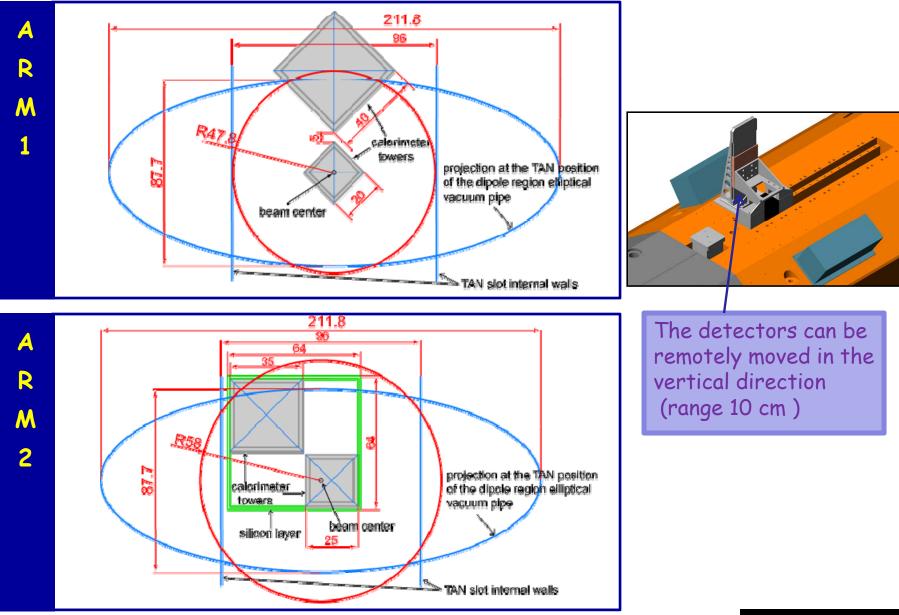

Gas X	σ (p - X) [mb]	ρ [molec./m ³]
H ₂	94	1.2 x 10 ¹¹
CH ₄	568	1.2 x 10 ¹⁰
СО	840	3.4 x 10 ⁸
CO ₂	1300	4.2 x 10 ⁸

Interaction rate: kNc/l_{LHC} $\Sigma \sigma_i \rho_i = 0.4$ Hz/m per beam

from left TAS (aperture limit) to right T2: $(20 \text{ m} + 14 \text{ m}) \times 0.4 \text{ Hz/m} = 13.6 \text{ Hz}$ per beam

missing:

- impact of more distant interactions
- full simulation with full geometry (shieldings etc.),
 2 scoring planes: entrances of T1, T2;
 details: particle energies, angles, bunch crossing information
- muon halo in CMS



LUCID

open issue: beam-gas background for LUCID

- The beam-gas background entering LUCID from the *back* has been estimated to be at a small level
- The beam gas entering LUCID from the *front* is presumably rather small (length ratio) but could be dangerous, since it is pointing to LUCID
- Can we get a background calculation for this contribution at a scoring plane of the LUCID front face (~17m)?

LHCf: Transverse projection in the TAN slot

