

Beam Induced Backgrounds: CDF Experience

R.J. Tesarek Fermilab

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Outline

Tevatron and CDF Instrumentation/Measurements

- Losses
- DC Beam

Effects Observed at CDF (sources/cures)

- Single event effects (SEE)
- Chronic radiation damage
- Physics Backgrounds

Accelerator Improvements

- Measurements
- Instrumentation

Summary

Work by many machine and experiment people

R.J. Tesarek

CDF-II Detector(G-rated)

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

4

Measuring Beam Losses/Halo at CDF

Losses/Halo rates measure beam conditions/risk Beam Losses all calculated in the same fashion

- Detector signal in coincidence with beam passing the detector plane.
- ACNET variables differ by detector/gating method.
- Gate on bunches and abort gaps

Beam Monitors

Beam Shower Counters (BSC)

BSC counters: monitor beam losses Halo counters: monitor beam halo and abort gap

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Beam Structure (from losses)

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Monitor Experience

"Typical Good Store"

R.J. Tesarek

Abort Gap Monitors

"DC" Beam in Abort Gap

• Risk to detectors on abort (acute radiation damage)

Abort Gap Halo (losses)

- fast
- VERY sensitive
- sensitive to ANY problem in Tevatron
 - good canary for experiment
 - bad debugging tool for accelerator
- Sync. Light Measurements
 - "direct" measure of beam in abort gap
 - slow

Abort Gap Beam & Losses

Beam Radiation Measurements

Radiation from Collisions

TLD measurements + model r measured transverse to the beam

R.J. Tesarek

Radiation from Beam Losses

TLD measurements + model r measured transverse to the beam

R.J. Tesarek

CDF Detector (Adults Only)

Readout, control and support electronics located on the detector:

5kW custom low voltage (LV) switching power supplies

Commercial remotely operated high voltage (HV) switching power supplies

Custom digitizing and readout electronics 9UVME crate (FPGA based)

I kW commercial low voltage (LV) linear power supplies.

Custom digitizing and readout electronics 6UVME crate (FPGA based)

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

This space for rent Contact: R.Roser roser@fnal.gov

3 April 2008

14

Operational Problems

Custom low voltage switching power supplies

- catastrophic component failure only with beam present
- average ~3 failures/week
- 12 failures in single day (St. Catherine's day massacre)
- single event burnout (SEB) of power MOSFET

Commercial high voltage switching power supplies (CPU controlled)

- "soft" failure when beam present
- loss of communication/cpu hang
- loss of calibration constants
- 10% of non-accelerator down time due to problem+recovery

Custom detector readout electronics (Shower Maximum, SMX, system)

- soft failure when beam present
- only systems near beam line fail
- communication interrupt/hang
- 6% of non-accelerator down time due to problem+recovery

R.J. Tesarek

Radiation and Shielding?

Scintillation counter measurements show low beta quadrupoles form a line source of charged particles.

Power supply failure analysis shows largest problem on the west (proton) side of the collision hall.

Shielding reduces ionizing radiation by 25%

Collision Hall Ionizing Radiation

Thermal luminescent dosimeter (TLD) measurements Shielding installed on proton side only. 25% reduction in radiation confirmed with measurements.

Jet/Missing E_T Backgrounds

W trigger requires energy imbalance in calorimeters.

"Jet/MET" Background Events

Events show "track" in calorimeter

- High energy muon
- Beam "halo" hitting Roman pot detectors

Particle "tracks"

20

Plug Calorimeter Backgrounds

Gaps in shielding aligned with backgrounds

R.J. Tesarek

Analysis Cuts Remove Backgrounds

- W Decay: $W^+ \rightarrow e^+ \nu$
 - Require energy matched to track
 - signal:halo >358:1 (95%CL)
- Graviton search: $\overline{p}p \rightarrow G\gamma$
 - Require good EM shower shape
 - Require no contiguous energy in φ slice.
 - Limited by Standard Model processes: $Z^0 \rightarrow \nu \overline{\nu} \gamma$
 - Z background:halo > I 6: I (68%CL)

Advances in selection criteria give halo suppression >1000

Halo (Beam Loss) Reduction

Vacuum problems identified in 2m long straight section of Tevatron (F sector ~ 1km from detector!)

Improved vacuum (TeV wide)

Commissioning of collimators to reduce halo

- > Halo/proton reduced by factor of 10.
- Physics backgrounds reduced by ~40% in some triggers
- Requires good beam quality monitoring
- Collaborative effort between experiment and accelerator

R.J. Tesarek

Collimators in Action

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

24

Improvements

2004 shutdown

- adjust low beta quads/magnet unroll
- dipole coil lift (skew quad component)
- Added separators (wider separation of beams)
- Moved Dzero separators

2005 shutdown

adjust low beta quads/magnet unroll

2006 shutdown

adjust low beta quads/magnet unroll

2007 shutdown

adjust low beta quads/magnet unroll

Typical Store (2004)

Beam Parameters:

Protons:	5000 - 9000	10^9 particles
Antiprotons:	500-1500	10^9 particles
Luminosity:	30 - 70	$10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Losses and Halo:

Quantity	Rate (kHz)	Limit (kHz)	comment
	2 15	25	chambors trip on over surrent
I L03363	2 - 15	23	chambers crip on over current
Pbar Losses	0.1 - 2.0	25	chambers trip on over current
P Halo	200 - 1000	-	
Pbar Halo	2 - 50	-	
Abort Gap Losses	2 - 12	15	avoid dirty abort (silicon damage)
LI Trigger	0.1 - 0.5		two track trigger (~I mbarn)

Note: All number are taken after scraping and HEP is declared.

R.J. Tesarek

Typical Store (2005)

Beam Parameters:

Protons:	5000 - 10000	10^9 particles
Antiprotons:	500-1800	10^9 particles
Luminosity:	50 - 170	$10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Losses and Halo:

better than 2004 worse than 2004 no change

Color Codes

Quantity	Rate (kHz)	Limit (kHz)	comment
P Losses	0.1 - 0.5	25	chambers trip on over current
Pbar Losses	0.1 - 3.0	25	chambers trip on over current
P Halo	15 - 18	-	
Pbar Halo	20 - 100	-	
Abort Gap Losses	0.1 - 15	25	avoid dirty abort (silicon damage)
LI Trigger	0.1-0.5		two track trigger (~I mbarn)

Note: All number are taken after scraping and HEP is declared.

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Typical Store (2007-8)

Beam Parameters:

Protons:	5000 - 10000	10^9 particles
Antiprotons:	1000-3000	10^9 particles
Luminosity:	50 - 300	$10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Losses and Halo:

better than 2005 worse than 2005 no change

Color Codes

 * High losses for first 2 hrs of store (decreasing rapidly) nearly steady state at lower value thereafter.

Quantity	Rate (kHz)	Limit (kHz)	comment
P Losses	0.05 - 15*	25	chambers trip on over current
Pbar Losses	0.02 - 3.0*	25	chambers trip on over current
P Halo	3 - 100*	-	
Pbar Halo	40 - 100*	-	
Abort Gap Losses	0.5 - 1.5*	25	avoid dirty abort (silicon damage)
LI Trigger	0.1-0.5		two track trigger (~I mbarn)

Note: All number are taken after scraping and HEP is declared.

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Observations/Summary

29

Accelerator Backgrounds (Losses)

- Beam is not always where you think it is (abort gaps)
- Beam losses may cause operational problems/physics backgrounds
- Origins of backgrounds may be far from detectors
 - Understanding losses <==> understand detector and accelerator
 - + dialog between experiment and accelerator crucial
- Real time beam monitoring important
- Measurement of backgrounds early helps identify potential problem areas

R.J. Tesarek

"If you know the enemy and know yourself, you need not fear the result of a hundred battles" -- Sun Tzu, The art of War (6th century B.C.)

Summary

Control of backgrounds important at CDF

- Detector operations
- Physics backgrounds

Backgrounds from

- Focusing triplet is a line source.
- Local aperture restrictions
- "Incomplete collimation"

Solutions

- Shielding
- Collimation
- Alignment
- Monitoring of beam conditions
- Analysis selection (physics)

Accelerator control of beam

- + Experiment (Accelerator)
- + Accelerator (Experiment)
- + Accelerator (Experiment)
- + Accelerator/Experiment
- + Experiment

Exchange between experiment and accelerator

R.J. Tesarek

References (Incomplete List)

General:

http://ncdf67.fnal.gov/~tesarek

Single Event Effects:

• R.J. Tesarek, et al., Proceedings IEEE-NSS/MIC Conference, El Conquistador Resort, Fajardo, Puerto Rico, October 22-30 (2005).

Beam Quality and Instrumentation:

- http://www-cdfonline.fnal.gov/acnet/ACNET_beamquality
- M.K. Karagoz-Unel, R.J. Tesarek, Nucl. Instr. and Meth., A506 (2003) 7-19.
- A.Bhatti, et al., CDF internal note, CDF 5247.
- D.Acosta, et al., Nucl. Instr. and Meth., A494 (2002) 57-62.
- A. Drozhdin, et al., Proceedings: Particle Accelerator Conference(PAC03), Portland, OR, 12-16 May 2003.
- L.Y. Nicolas, N.V. Mokhov, Fermilab Technical Memo: **FERMILAB-TM-2214** June (2003).

Radiation:

R.J. Tesarek

- <u>http://ncdf67.fnal.gov/~tesarek/radiation</u>
- S. d'Auria, et al., Nucl. Instr. and Meth., **A513** (2003) 89-93.
- K. Kordas, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).
- R.J. Tesarek, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).

Backup/Supplemental Slides

R.J. Tesarek

Beam Halo Loss Detectors

Halo Counters

Beam Shower Counters

West Alcove floor

ACNET variables:

B0PHSM: beam halo B0PBSM: abort gap losses B0PAGC: 2/4 coincidence abort gap losses BOPLOS: proton losses (digital) LOSTP: proton losses (analog)

R.J. Tesarek

Beam Halo Counters

R.J. Tesarek

Activation Background in Counters

R.J. Tesarek

Neutron Spectrum Measurement

Evaluate Neutron Energy Spectrum

- Bonner spheres + TLDs
- ~I week exposures
- Shielding in place
 Measuring neutrons is hard
 Work in progress...

Polyethylene "Bonner" spheres

Neutron Data

Simulated Radiation Environment

Detailed MARS simulation of:

accelerator & beam transport

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

St Catherine's Day Massacre

12 switching power supplies failed in an 8 hour period.

- only during beam
- only switching supplies
- failures on detector east side
- shielding moved out
- new detector installed
- beam pipe misaligned

Conclusion: Albedo radiation from new detector

L.V. Power Supply Failures

Power Factor Corrector Circuit

Most failures were associated with high beam losses or misaligned beam pipe

> Power MOSFET Single Event Burnout (SEB)

silicon in MOSFET sublimated during discharge through single component

3 April 2008

Run I Shielding

Run I Shielding

Detector configuration different in Run II

- Run I detector "self shielded"
- Additional shielding abandoned (forward muon system descoped).
- Shielding installed surrounding beam line.

Silicon Detector Dose (Damage)

Measure I_{bias}

Simulated Ionizing Radiation

MARS simulation of CDF 45 Dose Rate (rad/pbarn⁻¹) 00 5 00 5 00 5 TLD Data MARS Simulation Collisions simulated by r=18cm (12 pbarn⁻¹) r=18cm r=18cm (167 pbarn⁻¹) r=35cm DPMJET r=35cm (12 pbarn⁻¹) Simulation scaled up 2x r=35cm (167 pbarn⁻¹) simulation scaled 2xfor plot (check shape) Preliminary **Missing Material?** 25 electronics 20 cables cooling 15 + Qualitative understanding 10 of collision dose 5 (dominant) Losses not understood! 0 -150 -50 50 150 -100 100 0 Z (cm) **Drotons** antiprotons

Collision Component

L.Nicolas R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

Electron Lens Abort Gap Cleaning

Store 1229

Close Duplicate

"Poor Collimation" Example

antiproton abort gap losses

Dzero Roman Pot position

antiproton losses

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

R.J. Tesarek

Accelerator Induced Background Workshop, CERN

3 April 2008

47