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Outline

Tevatron and CDF
Instrumentation/Measurements

• Losses

• DC Beam

Effects Observed at CDF (sources/cures)
• Single event effects (SEE)

• Chronic radiation damage

• Physics Backgrounds

Accelerator Improvements
• Measurements

• Instrumentation

Summary
Work by many machine and experiment people
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Tevatron Beam Structure
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r = 1 km

beam abort

interaction 
regions

2 B0(CDF)
D0(Dzero) 

beam energy 980 GeV

# bunches 36 (3 trains of 12 bunches)

bunch length 1 ns

bunch spacing 396 ns

abort gap 2.6 μs

protons/bunch 30x1010

pbars/bunch 8x1010

luminosity 2.8x1032 cm-2s-1

RF frequency 53 MHz

injection

RF

Both beams in same vacuum pipe

Beam Parameters
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CDF-II Detector(G-rated)

protons

anti-pr
otons

Ecm = 1.96 TeV
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Measuring Beam Losses/Halo at CDF
Losses/Halo rates measure beam conditions/risk
Beam Losses all calculated in the same fashion

•  Detector signal in coincidence with beam passing the detector 
plane.

• ACNET variables differ by detector/gating method.

• Gate on bunches and abort gaps

"Lost Particle"

Proton Bunches

Gate

Detector

CDF

“Halo Particle”

Definitions:
lost particles:  close to beam
halo particles:  far from beam
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Beam Monitors

Proton direction

IP

Antiproton direction

z = + 1664 cmz = !1809 cm

East
alcove

West
alcove

CENTRAL 

DETECTOR

IM
U

IM
U

Beam Shower Counters (BSC)

Halo counters Halo counters

BSC counters:   monitor beam losses
Halo counters:  monitor beam halo and abort gap

After 11/03 After 11/03
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Beam Structure (from losses)
1 Tevatron revolution

Abort Gap

2.6μs

21μs
Not all beam is in bunches!
beam in abort gaps => dirty aborts

DC Beam

Note:  detector reset cycles during abort 
gaps susceptible to abort gap losses.
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Monitor Experience

proton halo

proton losses

proton abort gap halo

proton beam current

“Typical Good Store”
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Abort Gap Monitors

9

“DC” Beam in Abort Gap
• Risk to detectors on abort (acute radiation damage)

Abort Gap Halo (losses)
• fast 

• VERY sensitive

• sensitive to ANY problem in Tevatron 

• good canary for experiment

• bad debugging tool for accelerator

Sync. Light Measurements
• “direct” measure of beam in abort gap

• slow 
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Abort Gap Beam & Losses
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2e9

3e9

1e9

0e9

abort gap beam
(sync. light)

abort gap losses
(counters)

RF station trip

tune changes
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Beam Radiation Measurements
TLDs installed in tracking volume
3 exposure periods

• 0.06 pbarn-1 (p-loss dominated)

• 12.3 pbarn-1

• 167 pbarn-1 0
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Fig. 2. Ionizing radiation dose as a function of ; protons travel in the
direction. The top, middle and bottom plots correspond to the three exposure
periods (see Table I). Curves on the plots serve only to guide the eye between
measurements at the same radius from the beam.

the closed points in Figure 4. The shaded band in the figure

represents the systematic uncertainty on the loss measurement.

Good agreement is seen between the collision dose rate sep-

arated from the first two periods and the dose rate (raw dose

normalized by the luminosity) in the third period as indicated by

the open points. One may estimate the fraction of the ionizing

radiation from collisions by dividing the raw dose observed in

a given period by the product of the collision dose rate and the

luminosity. Using this prescription, we find collisions account

for 20%, 82% and 91% of the ionizing radiation for the first,

second and third exposure periods, respectively. Qualitatively,

the increase in the fraction of radiation from collisions improves

with the beam conditions. We note here that a substantial period

of accelerator studies and beam tuning occurred before the

installation of the silicon detectors and radiation monitors.

V. MODELING

In order to predict the radiation seen by various detector

components, one needs a model to extrapolate the above

measurements to device locations. We use a model based on

previous experience from silicon damage profiles measured in

the CDF detector [2]. This model assumes that the radiation

field surrounding the interaction region is cylindrically sym-
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Fig. 3. Neutron radiation dose as a function of ; protons travel in the
direction. The top and bottom plots correspond to the first two exposure

periods (see Table I). Curves on the plots serve only to guide the eye between
measurements at the same radius from the beam.

metric and follows a power law in , where is the distance

from the beam axis. We fit the data at each location to the

functional form:

(1)

where is an absolute normalization, is the power law

and is the beam-detector relative offset. The normal-

ization and power law results are summarized as a function

of in Figures 5 and 6 for the collision and proton loss

components of the ionizing radiation field, respectively. We

see good agreement between the collision component separated

from the first two periods and the data of the third period

for the region of the tracking volume occupied by the silicon

detectors ( cm). We find the value of for the

collision component ranges 1.5 – 1.6 in this region while the

loss component in the same region ranges 1.7 – 2.0.

Ultimately, one wishes to compare the radiation field mea-

surements with the damage observed in the detectors. The

radiation field predicted by the TLD measurements can be

tested by comparing particle fluxes calculated from leakage

current measurements in the low radius silicon detectors. The

particle flux is calculated by measuring the slope in the silicon

leakage current as a function of accelerator delivered luminos-

ity. The rate of increase in the current is corrected from C

to C and a damage factor of . The

dose rate in the TLDs is converted to a particle flux using the

conversion factor of minimum ionizing particles

(MIP)/rad and dividing the result by the luminosity for the

antiprotonsprotons

0.06 pbarn−1

12.3 pbarn−1

167 pbarn−1
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Radiation from Collisions
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Radiation from Beam Losses
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CDF Detector (Adults Only)
Readout, control and support 
electronics located on the 
detector:

protons

5kW custom low voltage (LV) switching 
power supplies 

Commercial remotely operated high 
voltage (HV) switching power supplies

Custom digitizing and readout electronics 
9U VME crate (FPGA based)

1 kW commercial low voltage (LV) linear 
power supplies.

Custom digitizing and readout electronics 
6U VME crate (FPGA based)

This space for rent
Contact: R.Roser
roser@fnal.gov

mailto:roser@fnal.gov
mailto:roser@fnal.gov
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Operational Problems
Custom low voltage switching power supplies

• catastrophic component failure only with beam present

• average ~3 failures/week

• 12 failures in single day (St. Catherine’s day massacre)

• single event burnout (SEB) of power MOSFET
Commercial high voltage switching power supplies (CPU controlled)

• “soft” failure when beam present

• loss of communication/cpu hang

• loss of calibration constants

• 10% of non-accelerator down time due to problem+recovery
Custom detector readout electronics (Shower Maximum, SMX, system)

• soft failure when beam present

• only systems near beam line fail

• communication interrupt/hang

• 6% of non-accelerator down time due to problem+recovery
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Low Voltage Power Supply Failures

Failure Characteristics

• Position Dependent

• Beam Related
Experiments show focusing 
quads are a line source of 
radiation

Failure Locations
SVX Readout COT Readout

Silicon detector readout

N

S
EW

antiprotonsprotons

T = top

NB ST SB NT NB ST SB

0
1
2
3
4
5
6
7

NT NB ST SB NT NB ST SB

0
1
2
3
4
5
6
7EastWest West East

N = north
S = south B = bottom

NT

Central tracker readout
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Radiation and Shielding?
Scintillation counter measurements show low beta quadrupoles form 
a line source of charged particles.

Power supply failure analysis shows largest problem on the west 
(proton) side of the collision hall.

Shielding reduces ionizing radiation by 25% 

antiprotonsprotons

CDF Detector w/ additional shielding



R.J. Tesarek Accelerator Induced Background Workshop, CERN 3 April 2008 18

Collision Hall Ionizing Radiation
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Thermal luminescent dosimeter (TLD) measurements
Shielding installed on proton side only.
25% reduction in radiation confirmed with measurements.

K.Kordas, et al.,  IEEE-NSS/MIC Portland, OR (2003)
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Jet/Missing ET Backgrounds
W trigger requires energy imbalance in calorimeters.

Trigger:  Missing ET > 25 GeV
muon bremsstrahlung

peak/background ~ beam current

proton side

antiproton side

φ = π :

φ =
nπ

2
:

19
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“Jet/MET” Background Events
Events show “track” in 
calorimeter

• High energy muon

• Beam “halo” hitting Roman 
pot detectors

Protons

Central Wall

PlugPlug

Wall

Calorimeter Schematic

Particle “tracks”

protons antiprotons
20
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Plug Calorimeter Backgrounds
Gaps in shielding aligned with backgrounds

between torroid halfs
"Fin" to plug 2" gap 

Plug Calorimeter

Wall Calorimeter

5cm gap

torroid steel

21



Z0
→ ννγ

MET + γ

φ(MET)

L = 60 pb

ννγ 

•Good photon • shower shape•Event topology• No contiguous energy in φ slice (CDFnote:  6009)
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Analysis Cuts Remove Backgrounds

22

W ! e ν
Fit MET phi distribution for peak at φ=180.

358:1

φ(MET)

W Decay:

• Require energy matched to 
track

• signal:halo >358:1 (95%CL)
Graviton search:

• Require good EM shower 
shape

• Require no contiguous energy 
in φ slice.

• Limited by Standard Model 
processes:

• Z background:halo >16:1   
(68%CL)

Advances in selection criteria give 
halo suppression >1000

Courtesy E. Halkiadakis

W
+
→ e

+
ν

pp → Gγ

∫
Ldt = 90 pb−1

pp → Gγ

W
+
→ e

+
ν

Courtesy P.Onyisi, B.Knutesen

∫
Ldt = 60 pb−1
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Halo (Beam Loss) Reduction

Improved vacuum (TeV wide)

Commissioning of 
collimators to reduce halo

> Halo/proton reduced by 
factor of 10.

> Physics backgrounds 
reduced by ~40% in some 
triggers

Requires good beam quality 
monitoring

Collaborative effort between 
experiment and accelerator

C:B0PHSM

T:F1IP1A

PRESSURE

STORE 1207

PROTON HALO

175 mins

R. Moore,  V. Shiltsev, N.Mokhov,  A. Drozhdin

Vacuum problems identified in 2m long straight section of Tevatron 
(F sector ~ 1km from detector!)
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Collimators in Action

24

proton halo
proton losses

E0 collimator

proton beam current
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Improvements

2004 shutdown
• adjust low beta quads/magnet unroll

• dipole coil lift (skew quad component)

• Added separators (wider separation of beams)

• Moved Dzero separators

2005 shutdown
• adjust low beta quads/magnet unroll

2006 shutdown
• adjust low beta quads/magnet unroll

2007 shutdown
• adjust low beta quads/magnet unroll

25
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Quantity
Rate
(kHz)

Limit
(kHz) comment

P Losses 2 - 15 25 chambers trip on over current

Pbar Losses 0.1 - 2.0 25 chambers trip on over current
P Halo 200 - 1000 -

Pbar Halo 2 - 50 -

Abort Gap Losses 2 - 12 15 avoid dirty abort (silicon damage)

L1 Trigger 0.1 - 0.5 two track trigger (~1 mbarn)

Losses and Halo:

Beam Parameters:
Protons: 5000 - 9000 109 particles

Antiprotons: 500-1500 109 particles

Luminosity: 30 - 70 10
30

cm
−2

s
−1

Note:  All number are taken after scraping and HEP is declared. 



Typical Store (2005)
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Quantity
Rate
(kHz)

Limit
(kHz) comment

P Losses 0.1 - 0.5 25 chambers trip on over current

Pbar Losses 0.1 - 3.0 25 chambers trip on over current
P Halo 15 - 18 -

Pbar Halo 20 - 100 -

Abort Gap Losses 0.1 - 15 25 avoid dirty abort (silicon damage)

L1 Trigger 0.1-0.5 two track trigger (~1 mbarn)

Losses and Halo:

Beam Parameters:
Protons: 5000 - 10000 109 particles

Antiprotons: 500-1800 109 particles

Luminosity: 50 - 170 10
30

cm
−2

s
−1

Note:  All number are taken after scraping and HEP is declared. 

better than 2004
worse than 2004

Color Codes

no change



Typical Store (2007-8)
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Quantity
Rate
(kHz)

Limit
(kHz) comment

P Losses 0.05 - 15* 25 chambers trip on over current

Pbar Losses 0.02 - 3.0* 25 chambers trip on over current
P Halo 3 - 100* -

Pbar Halo 40 - 100* -

Abort Gap Losses 0.5 - 1.5* 25 avoid dirty abort (silicon damage)

L1 Trigger 0.1-0.5 two track trigger (~1 mbarn)

Losses and Halo:

Beam Parameters:
Protons: 5000 - 10000 109 particles

Antiprotons: 1000-3000 109 particles

Luminosity: 50 - 300 10
30

cm
−2

s
−1

Note:  All number are taken after scraping and HEP is declared. 

better than 2005
worse than 2005

Color Codes

no change

* High losses for first 2 hrs of store 
(decreasing rapidly) nearly steady 
state at lower value thereafter.
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Observations/Summary

Accelerator Backgrounds (Losses)
• Beam is not always where you think it is (abort gaps)

• Beam losses may cause operational problems/physics backgrounds

• Origins of backgrounds may be far from detectors
+ Understanding losses <==> understand detector and 

accelerator
+ dialog between experiment and accelerator crucial

• Real time beam monitoring important

• Measurement of backgrounds early helps identify potential 
problem areas

29
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Final Note

“If  you know the enemy and know yourself, you need not fear the result of  a hundred battles” 
 -- Sun Tzu, The art of  War (6th century B.C.)

30
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Summary
Control of backgrounds important at CDF

• Detector operations

• Physics backgrounds

Backgrounds from
• Focusing triplet is a line source

• Local aperture restrictions

• “Incomplete collimation”

Solutions
• Shielding                                    + Experiment (Accelerator)

• Collimation                                + Accelerator (Experiment)

• Alignment                                  + Accelerator (Experiment)

• Monitoring of beam conditions    + Accelerator/Experiment

• Analysis selection (physics)          + Experiment

Exchange between experiment and accelerator 
31

} Accelerator control 
of beam



R.J. Tesarek Accelerator Induced Background Workshop, CERN 3 April 2008 32

References (Incomplete List)
General:

• http://ncdf67.fnal.gov/~tesarek
Single Event Effects:

• R.J. Tesarek, et al., Proceedings IEEE-NSS/MIC Conference, El Conquistador 
Resort, Fajardo, Puerto Rico, October 22-30 (2005).

Beam Quality and Instrumentation:

• http://www-cdfonline.fnal.gov/acnet/ACNET_beamquality

• M.K. Karagoz-Unel, R.J. Tesarek, Nucl. Instr. and Meth.,  A506 (2003) 7-19.

• A.Bhatti, et al., CDF internal note, CDF 5247.

• D. Acosta, et al., Nucl. Instr. and Meth., A494 (2002) 57-62.

• A. Drozhdin, et al., Proceedings: Particle Accelerator Conference(PAC03), 
Portland, OR, 12-16 May 2003.

• L.Y. Nicolas, N.V. Mokhov, Fermilab Technical Memo: FERMILAB-TM-2214 
June (2003).

Radiation:

• http://ncdf67.fnal.gov/~tesarek/radiation

• S. d’Auria, et al., Nucl. Instr. and Meth., A513 (2003) 89-93.

• K. Kordas, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, 
November 19-25 (2003).

• R.J. Tesarek, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, 
November 19-25 (2003).

http://ncdf67.fnal.gov/~tesarek/radiation
http://ncdf67.fnal.gov/~tesarek/radiation


R.J. Tesarek Accelerator Induced Background Workshop, CERN 3 April 2008 33

Backup/Supplemental Slides



R.J. Tesarek Accelerator Induced Background Workshop, CERN 3 April 2008 34

Beam Halo Loss Detectors
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B0PHSM:  beam halo
B0PBSM:   abort gap losses
B0PAGC:  2/4 coincidence abort gap losses

B0PLOS:  proton losses (digital)
LOSTP:    proton losses (analog)

ACNET variables:

active area = 0.9 m2 active area = 77 cm
2
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Beam Halo Counters

CDF

Protons
Antiprotons

quadrupole

separator

dipole

Roman pots

collimator
CDF
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Activation Background in Counters

Activated quadrupole steel

• Periods of sustained high 
losses

• Large beam “accident”

• β radiation mostly
- Lose timing info
- Contaminate measurement

Majority 2/4 coincidence

+ Reduces contamination

+ Reduces overall rate
- Insensitive to single 

particles
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Neutron Spectrum Measurement

Evaluate Neutron Energy Spectrum 

• Bonner spheres + TLDs

• ~1 week exposures

• Shielding in place
Measuring neutrons is hard
Work in progress...

Polyethylene “Bonner” spheres

protons antiprotons

Bonner sphere locations
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Neutron Data

Compare data with 252Cf
• spontaneous fission

• ~20 n/decay

• <En> ~2 MeV

Data show average En < 2 MeV

To do:

• understand En distribution

• neutron fluence

Collision hall data
252Cf (calibration)
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Simulated Radiation Environment
Detailed MARS simulation of:

• accelerator & beam transport

• collision hall & detector
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St Catherine’s Day Massacre

12 switching power supplies 
failed in an 8 hour period.

• only during beam 

• only switching supplies

• failures on detector east 
side

• shielding moved out

• new detector installed

• beam pipe misaligned
Conclusion:  Albedo radiation 
from new detector

switching supplies

linear supplies

protons

New Detector
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L.V. Power Supply Failures
Power Factor Corrector 
Circuit

Most failures were 
associated with high beam 
losses or misaligned beam 
pipe

> Power MOSFET Single 
Event Burnout (SEB) 

silicon in MOSFET sublimated
during discharge through single 

component

epoxy covering
fractured

SiO2

P +
P +

Drain

Gate

Electron Current

Ionizing Track

Poly

Metal

P!Body

N!Epi N!Epi

P!Body

Hole Current

N!Source N!Source
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Run I Shielding

Detector configuration 
different in Run II

• Run I detector “self 
shielded”

• Additional shielding 
abandoned (forward 
muon system de-
scoped).

• Shielding installed 
surrounding beam line.

Tevatron Losses and CDF Shield Configuration In Run I

~ 0 Track Chamber. Calorimeter.. Steel. Concrete Shield In Tevatron tunnel

RunllCDF Shielding Design for Run II

~ 0 Track Chamber. Calorimeter. Steel. Concrete Shield In Tevatron tunnel

"Snout" on Toroids
helps . M~on Systems

/
Shield between

beamplpe' and
Muon Systems

Steel between
torolds shields
IMU from beam pipe

Run I Shielding

Tevatron Losses and CDF Shield Configuration In Run I

~ 0 Track Chamber. Calorimeter.. Steel. Concrete Shield In Tevatron tunnel

RunllCDF Shielding Design for Run II

~ 0 Track Chamber. Calorimeter. Steel. Concrete Shield In Tevatron tunnel

"Snout" on Toroids
helps . M~on Systems

/
Shield between

beamplpe' and
Muon Systems

Steel between
torolds shields
IMU from beam pipe

Run II Shielding 
(beginning of run)

concretesteelcalorimeter

concrete
steel
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Silicon Detector Dose (Damage)
Measure Ibias 

• correct Temp. to 20C

• αdamage=3.0x1017A/cm

Early comparison with TLD 
Data

• Assume r-α scaling

• 1Gy=3.8x109 MIPS/cm2

Temp profile of SVX sensors 
poorly understood. 

Update with full tracker in 
2005.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6
! (radians)

fl
u

e
n

c
e

 /
 "
 L

d
t 

  
 (

x
1

0
1

0
 p

b
a

rn
/c

m
2
)

Si I
leak

 data(r = 1.7cm)

TLD + Model prediction

Note:  Beam offset  5mm from detector axis
P. Dong

L00 damage:  15 pbarn-1
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Simulated Ionizing Radiation

MARS simulation of CDF

• Collisions simulated by 
DPMJET

• Simulation scaled up 2x 
for plot (check shape)

Missing Material?

• electronics

• cables 

• cooling
+ Qualitative understanding 

of collision dose 
(dominant)

- Losses not understood!
protons antiprotons

L.Nicolas

Collision Component
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Electron Lens Abort Gap Cleaning

45
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“Poor Collimation” Example

46

antiproton abort 
gap losses

antiproton losses

Dzero Roman Pot
position
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RF Glitch

47

Abort Gap
Losses

Sum RF 
voltage


