BIB's in ATLAS: Issues & Plans

W. Kozanecki (CEA-Saclay)

for the ATLAS Background Working Group

- Introduction: scope & scale
- Expected impact of Beam-Induced Backgrounds on ATLAS performance
- **Overview of background-monitoring instrumentation**
- What feedback could ATLAS provide?
- What accelerator information might prove valuable?
- Special beam conditions
- Summary

Scope of this Presentation

- Detector-protection issues, beam-abort system & beam-accident scenarios
 - have so far received top priority in ATLAS
 - o protocols are well advanced
 - o instrumentation is installed
 - o read-out electronics is in progress
 - communication & online-monitoring software in (various states of) progress

These topics are considered off-subject for this meeting.

• Here, focus on 'steady-state' machine-induced backgrounds

- o under 'stable beams'
- Everything shown today
 - > reflects the fact that in most areas the work is just starting,
 - > is highly preliminary, and
 - > some of it is most likely wrong!

Introduction: the Scale of the Problem

- ATLAS was designed to operate efficiently @ $L \sim 10^{34}$ cm⁻² s⁻¹
- At nominal LHC luminosity, particle fluxes in/around ATLAS are dominated by
 - p-p interaction products in the Inner Detector, calorimeters and inner layers of the muon spectrometer
 - \odot a 'sea' of n & γ 's (from high- η impacts in the calorimeters & shielding) over most of the muon spectrometer
- Beam-halo & beam-gas rates (both from UX & distant) need to be assessed in comparison to the above rates and occupancies
- Backgrounds are likely to be worse at the beginning
 - $\odot\,$ relative to the actual luminosity (backgrounds scale much more slowly than \pounds), but also...
 - on an absolute scale (unconditioned vacuum system, stronger p halo)
 - In addition, the more open trigger may make the experiment more sensitive
- On the long term (nominal currents & \pounds), and in view of the simulation & operational uncertainties, it would be prudent to assume that BIB's could easily end up an order of magnitude larger than predicted today. This is <u>not</u> done in the numbers that follow!

Slide 3

Expected impact on ATLAS performance (I)

○ Inner Detector: *O* (500) charged particles (from pp) per Xing ($|\eta| < 3$)

- in comparison, beam halo and beamgas negligible in terms of dose & occupancy
- track quality cuts eliminate most beam-gas and all halo "tracks" in ID (simulations by VT/AS)

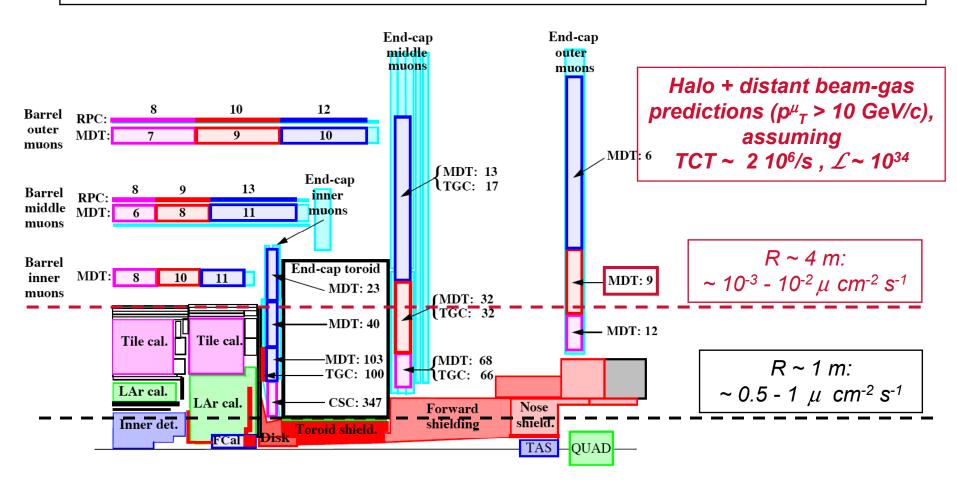
Location	Charged-particle flux		
	above 10 MeV (Hz/cm ²)		
Pixel layer 0	40×10^{6}		
SCT layer 1	$1.5 imes10^{6}$		
SCT disk 9	10 ⁶		
TRT outer radius	10 ⁵		

o Calorimeters

- In most of the liquid argon calorimeters the electronics noise is roughly equal to the pileup noise at $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- ◎ In order to be significant for event reconstruction, machine backgrounds must deposit energy density comparable to pileup events at $\mathcal{L} = 10^{34}$ cm⁻² s⁻¹
- Tile calorimeter: no quantitative study yet, but expect conclusions similar to those in LAr
- Forward calorimeters: at $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, pp interactions deposit about 7 TeV/crossing on each side

Expected impact on ATLAS performance (II)

• Trigger: see M. Huhtinen's talk

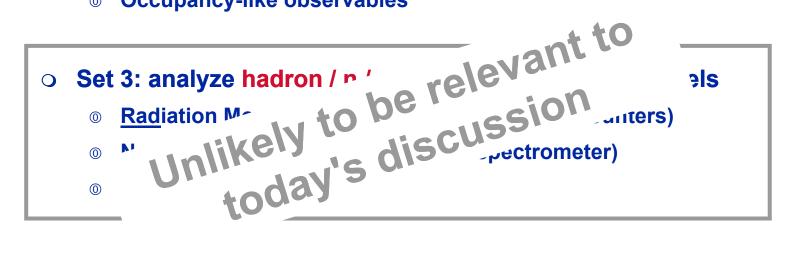

- Low beam-gas rates from UX imply these are not an issue
- Uncertainty in halo (and distant beam-gas) rates imply that more study is warranted on events in the tail of the distribution, and on possible muon showering effects (see MH's talk)
- Overall, no indications so far of any serious trigger worries from beam backgrounds

• Muon spectrometer

- the fluxes of halo/beam-gas muons & of neutrons (from TCT) appears small compared to those from p-p interactions (next slide)
 - > it might be wise to measure them at some stage (possible using a speciallyconfigured forward- μ trigger; measurement may be limited to $|\eta| > 1.8$)
- however, care needs to be exercized (at least initially) in turning on those chambers closest to the beam line

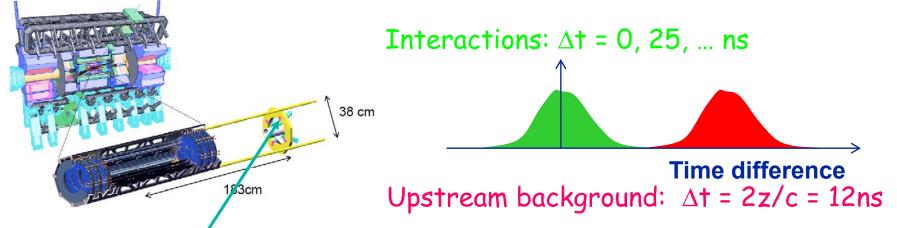
Average expected single-plane counting rates in Hz/cm²

from pp interactions at 10^{34} cm⁻² s⁻¹, for various regions in the muon spectrometer


Even if the steady-state halo & beam gas muon rate were 10x higher than predicted, the impact on the muon spectrometer is not <u>expected</u> to be an issue.

A preliminary estimate (VT) of the n flux is ~ 0.8 n into the ATLAS cavern, per proton incident on the TCT - not an issue.

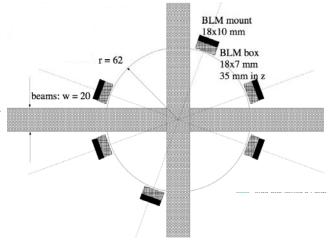
Slide 6


Overview of background monitoring instrumentation

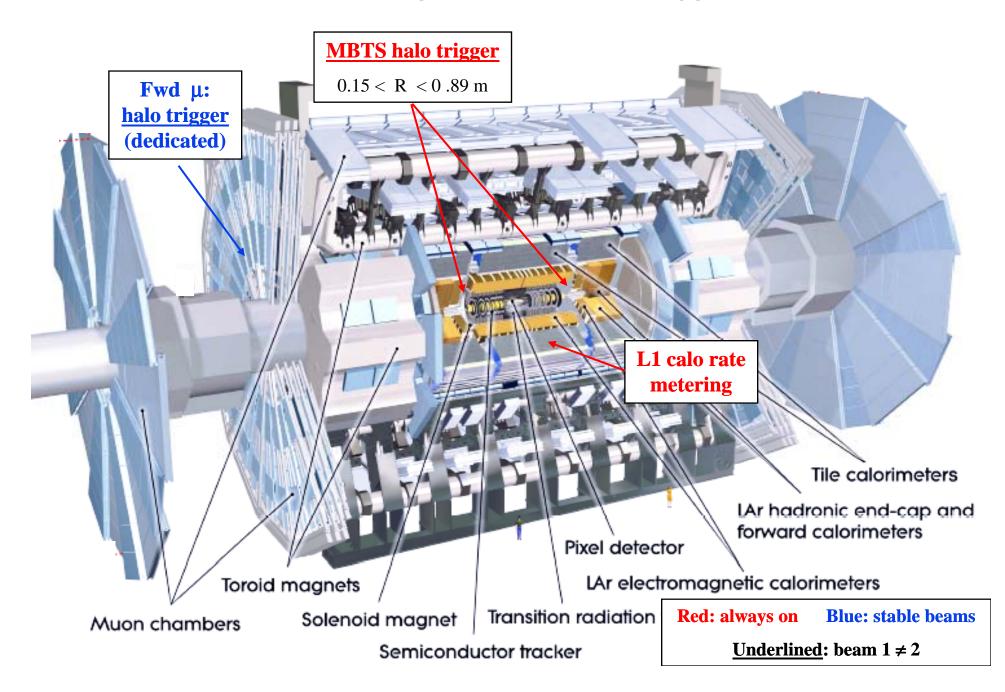
- Set 1: beam conditions facing the Inner Detector
 - **Beam Conditions Monitor (BCM)** \bigcirc
 - Beam Loss Monitors (BLM) \bigcirc
- Set 2: ATLAS subdetectors as background monitors 0
 - **Trigger-like observables** \bigcirc
 - **Occupancy-like observables** \bigcirc

Beam Conditions Monitor (BCM)

• Distinguish collisions from background through time-of-flight measurement with detectors at either side of the IP

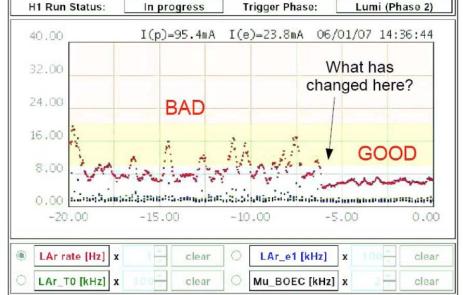


- 4 BCM stations on each side of the Pixel detector
 - o mounted on Pixel support structure at z = +/- 183.8 cm and r = 6 cm
- Measure # particles /cm² for every bunch crossing (25ns)
 - o fast, rad-hard 1cm² pCVD diamond sensor
 - fast elx (rise time ~ 1ns, width ~ 3ns, baseline restored in < 10ns)
 - FPGA-based control & monitoring
 - \succ generates warning signals \rightarrow DSS
 - \succ generates 2 redundant beam-abort signals \rightarrow ATLAS BIS
 - > trigger signals to Central Trigger Processor (9) with hit pattern info
 - internal data buffer written to DCS after abort


Beam Loss Monitors (BLMs) MEO MEO MEM MEM MEBCM: t(Side A) - t(Side C) Forward Forward Toroid Toroid LAr Cal LAr Cal JForward JForward JNose JToroid JToroid ALC: N TAS OUAD BLM's

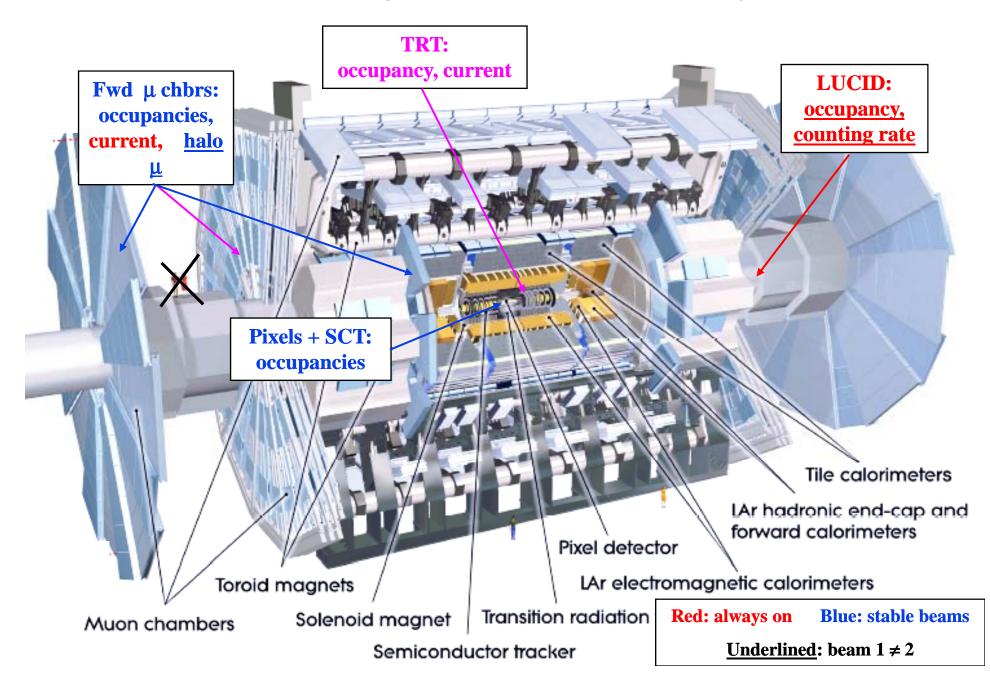
Slide 9

- Purpose: measure beam losses close to beam pipe by measuring the "DC" current in diamonds (similar systems used by BaBar & CDF)
 - Apply voltage to diamond and measure beam-induced current
 - > Response time of the order of ~ 40 μ s (~ 1/2 machine turn)
 - 6 stations on each side at ID endplate close to beam pipe (R ~ 65 mm)
 - **o** Will serve as a redundant system to BCM
 - > Likely separate inputs to ATLAS BIS
 - Almost identical system in production for CMS, LHCb & Alice: will allow direct comparison of measurements between 4 LHC experiments



ATLAS as a beam-background detector: "trigger" observables

Level-1 calorimeter trigger: pre-processor rate metering


- L1Calo trigger will provide unbiased tower-by-tower rate monitoring
- o full η–φ map covered with high granularity
- configurable energy and countinginterval threshold
- independent of further ATLAS trigger event selection and DAQ

- → diagnostics of calorimeter channels with abnormal input rates to the ATLAS Level-1 trigger
- → monitoring of beam conditions during physics data taking in ATLAS
- → interface between ATLAS and LHC control room to optimize beam conditions

H1 LAr and muon trigger rates displayed in HERA control room for beam optimisation (halos)

ATLAS as a beam-background detector: "occupancy" observables

What information <u>could</u> ATLAS send to the CCC?

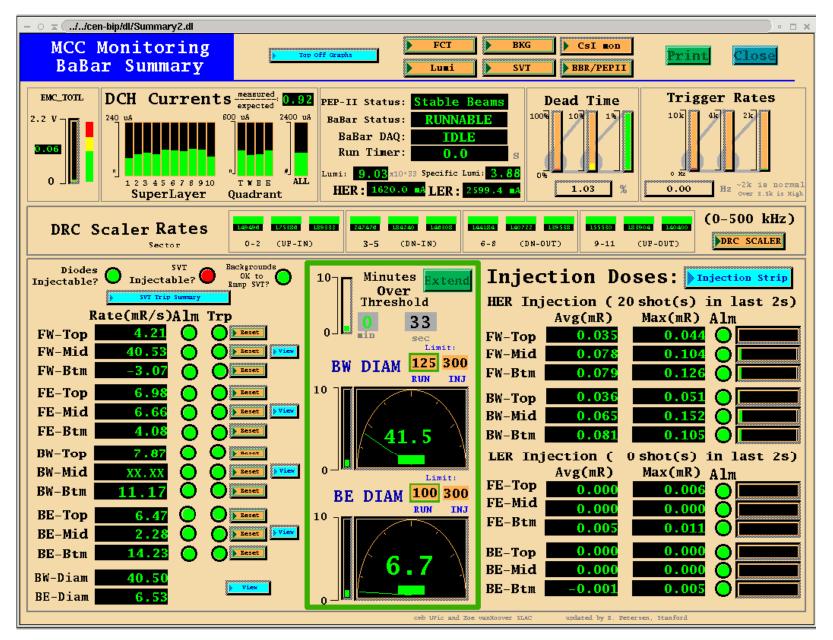
Information sent to CCC clearly needs to be <u>concise</u> & <u>easy</u> to use; but only experience will tell what is useful & what isn't. The following is a menu of what could be made available: pick & choose!

1. Normalized background figures of merit (BFoM's)

- o present thinking: some combination of
 - BCM rate and/or pattern, MBTS halo-trigger rate, Lucid out-of-time rate (these distinguish beams 1 & 2 by timing; always on)
 - > BLM dose rate, L1 calo rate metering

(no timing info, but beams 1 & 2 might be distinguishable by their spatial pattern; always on)

- to be clarified
 - > which of the above signal(s) or combinations ? (needs simulations)
 - \succ how to subtract the *L* contribution ?
 - > how many signals are desired? if only 2, have to choose between
 - beam 1 + beam 2 (1 signal ea.)
 - 2 complementary signals that mix beams 1 & 2
 - > normalisation: beam-current normalized? 'pain' normalized? different normalisation during injection, ramp/squeeze, setup, physics?


The choice & meaning of the BFoM's will unavoidably evolve with time - at least in ACR. What CCC 'sees' (after normalization) should remain operationally equivalent.

What information could ATLAS send to the CCC? (II)

2. General info

- Iuminosity
- o position, orientation (?) & size of luminous region
- 3. An ATLAS 'background status' or 'beam conditions' page?
 - o possible interface
 - > Web page?
 - > mirror of (well chosen) on-line monitoring display(s) ?
 - o contents: summary background display (numbers? thermometers?)
 - > BCM & BLM (rates, patterns for beams 1, 2)
 - > Trigger-like observables
 - Minimum-bias trigger scintillators (MBTS): halo rates in ID for beams 1, 2
 - L1 trigger: unbiased rate monitoring in calorimeters
 - muon-halo trigger & reconstruction using forward μ chambers (beams 1,2)
 - > Occupancy-like observables
 - LUCID: background rate very close to the beam pipe (beams 1, 2)
 - current in TRT
 - forward μ chambers (beams 1, 2 ?)
 - occupancies in ID (pixel, TRT, SCT)
 - occupancies in forward muon chambers (beams 1, 2 ?)

Example of background summary display (BaBar)

What information could ATLAS send to the CCC? (III)

- 4. Bunch-by-bunch information (\int ed over many turns; scale: 0.5 -1 min)
 - o bunch timing wrt clock from BPTX pickups (beams 1, 2)
 - relative bunch luminosity \mathcal{L}_{b} (or specific luminosity $\mathcal{L}_{sp} = \mathcal{L}_{b} / I_{b1} I_{b2}$)
 - > from LUCID (2 ns time resolution, bunch-by-bunch counters exist)
 - o backgrounds, separately for beams 1, 2
 - > BCM
 - MBTS (via bunch-by-bunch monitoring of trigger inputs in level-1 central trigger processor)
 - > LUCID (idem)
 - o backgrounds (global)
 - > L1 calo rate metering
 - > ID and/or muon chamber occupancies?
 - For both of these:
 - > no 1-2 discrimination, except maybe through patterns
 - bunch-by-bunch capability to be confirmed

What accelerator information might prove valuable to ATLAS?

o General machine parameters at point 1

The list stored on the LEADE page: <u>https://twiki.cern.ch/twiki/bin/view/Leade/WebHome</u>

Total beam intensity	dip/acc/LHC/BeamIntensity/Total/* (Ring1 and 2) http://bdidev1.cem.ch/bdisoft/development/BDI-Domains		OR & VER ositions	dip/acc/LHC/BPM/Q1
Individual bunch intensities	dip/acc/LHC/BeamIntensity/PerBunch/* (Ring1 and 2) http://bdidev1.cem.ch/bdisoft/development/BDI-Domains		OR & VER ositions	dip/acc/LHC/BMP/Totem
Average 2D beam size	dip/acc/LHC/BeamSize/* (Ring1 and 2) http://bdidev1.cem.ch/bdisoft/development/BDI-Domains		OR & VER	dip/acc/LHC/BPM/Atlas
Average	dip/acc/LHC/Class/Property/Device			
bunch length	Total		dip/acc/LHC/LongitunalDistribution	
Luminosity cdte mean	dip/acc/LHC/LuminosityAverage/* http://bdidev1.cern.ch/bdisoft/development/BDI-Domains		ngitudinal stribution	
			achine	dip/acc/LHC/MachineMode accelerator modes encodi
Luminosity	dip/acc/LHC/LuminosityPerBunch/*	Mo	ode	http://wwwpsco.cern.ch/private/timing/timing/Seq/tgm
cdte b-by-b	http://bdidev1.cem.ch/bdisoft/development/BDI-Domains	Be	am Mode	dip/acc/LHC/BeamMode beam modes encoding defin http://wwwpsco.cern.ch/private/timing/timing/Seq/tgm
Luminosity Gas mean	dip/acc/LHC/LuminosityAverage/* http://bdidev1.cem.ch/bdisoft/development/BDI-Domains	Be	eam type	dip/acc/LHC/BeamType/* (Ring1 and 2) beam type er http://wwwpsco.cem.ch/private/timing/timing/Seq/tgm
Lumber atte	dia (a sa 11 11 0 11 umaina sa itu Dan Dun ah (t	Be	am energy	dip/acc/LHC/BeamEnergy multiply by 120 to get MeV
Luminosity Gas b-by-b	dip/acc/LHC/LuminosityPerBunch/* http://bdidev1.cern.ch/bdisoft/development/BDI-Domains			
000000,0			fe beam	dip/acc/LHC/LTIM/SafeBeam/* (Ring1 and 2) flags en
Average Beam Loss	dip/acc/LHC/BLM/Avg50	flaç	gs	http://wwwpsco.cern.ch/private/timing/timing/Seq/tgm

seems fairly complete. Some additional suggestions follow (next slide).

Slide 17

What accelerator information might prove valuable to ATLAS? (II)

- **o** General machine parameters (additional)
 - o beam lifetimes
 - ◎ beam positions & angles at IP: (x, x', y', y')_{1,2} from beam orbit monitors
- Vacuum
 - o pump/gauge readings in incoming straights
- Collimation & beam losses
 - o jaw settings & beam-loss rates at
 - > tertiary collimators!
 - > betatron & momentum cleaning collimators (stage 1? stage 2?)
 - > injection collimators?
 - > [dump collimators?]

• Beam loss monitors (other than collimators) ?

Time scale for all these updates (secs to mins?) will be determined by how quickly things change: tbd on a case-by-case basis

Don't be shy about sending us info you think is useful!

Undesirable beam conditions?

• Rule-of-thumb:

- In slow time variations are OK, spikes & h_ic^{k^u}_ps are BAD!
- \odot prefer \mathcal{L} to be as uniform as possible, along the bunch train & over time, so that trigger thresholds remain optimum throughout and dead-time corrections are simpler

• How much is acceptable in terms of

- o bunch-to-bunch *L* variations: 20% ? (needs further study)
- Iuminosity & background variations within a fill: that's life...
- fill-to-fill luminosity & background variations: more constant = more convenience, fewer setup errors, smaller corrections
- bad vacuum conditions in IR: at least 1 order of magnitude compared to current predictions [LHC project report 783] at full \mathcal{L}
- o satellite bunches & particles between RF buckets
 - > may affect baseline (pileup) subtraction
 - £ contribution should be << systematic error on relative-£ measurement
 (% level)

 - > few % of charge should be safe

Special beam conditions in early running

- Unpaired bunches for background monitoring ?
 Preliminary answer:
 - o proved useful in CDF ?
 - should be available in both beams (separate background contributions)
 - o to be worked out:
 - > timing details (minimum gap required, where in the bunch train)
 - how many, how often

• Displaced collisions

- o potentially useful for ID alignment with tracks
 - some (aka 'weak") deformation modes (e.g. global scale) cannot be identified/corrected using projective tracks, but can (in principle) be recovered using displaced vertices
 - > preliminary studies show that events originating at 37.5 cm can be reconstructed with almost full efficiency
 - > their effectiveness in improving the ID alignment remains to be quantified
- □ 1-bucket offset (∆z = 37.5 cm) preferred (pixel barrel is ~ 77 cm long);
 12 h of running should suffice (limit is DAQ bandwidth, not *L*)

Areas where work is needed before first beams (a partial list...)

 Self-consistent, validated accelerator-background simulation (distant beam-gas + halo from tertiary collimators)

O Background simulations in ATLAS

- o complex simulation machinery now ready (A. Stradling, V. Talanov)
 - > usable by all ATLAS subdetectors but manpower needed!
 - > needs reference input data set: μ & hadrons at z = 23 m scoring plane
- o top priority: "calibrate" the background monitors:
 - > BCM rate, multiplicity & patterns
 - BLM & MBTS signatures
 - against particle fluxes & danger levels in
 - > pixels, SCT, TRT
 - \succ innermost forward μ chambers
- o determine how useful background muons can be to align
 - > the Inner Detector
 - > the muon spectrometer

Areas where work is needed before first beams (II)

- **o** Information transfer between ATLAS & LHC
 - top priority:
 - > background info from ACR \rightarrow CCC
 - choose signals, choose normalization
 - > this requires the above-mentioned simulations
 - O ACR: comprehensive & integrated set of background monitoring tools
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 - both ways (ACR \(\Low CCC\)): finalize/commission communication
 protocols

• Background monitoring instrumentation

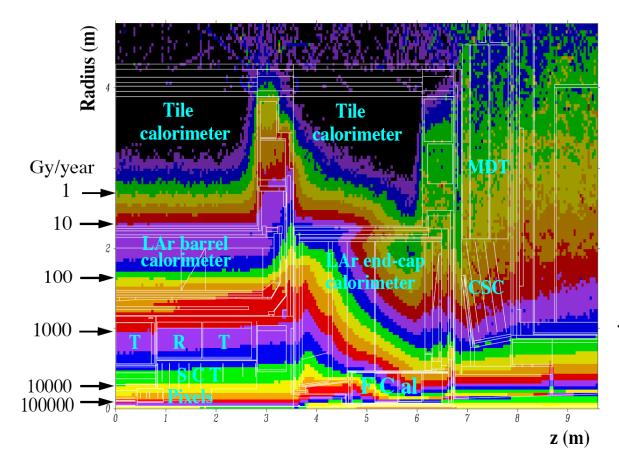
- o tool needed to monitor the backgrounds...
 - > at large radius in the μ spectrometer
- o implementation must be completed (path is known) for monitoring
 - very close to the beam pipe (LUCID)
 - > close to the pixels (BCM)
 - > over the ID (BLM's, MBTS)
 - > in the calorimeter (L1 rate)

Conclusions

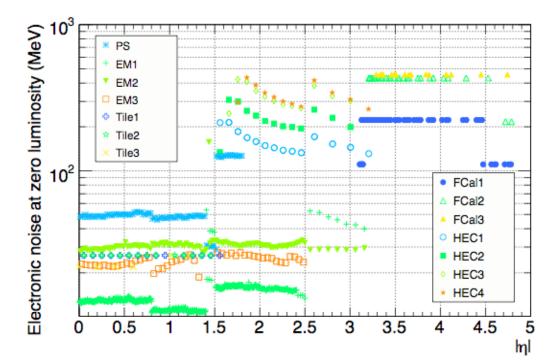
- Simulations suggest that beam-induced backgrounds should not be a major issue for ATLAS; reality, however, may decide otherwise especially during early running
- A panoply of background monitors is available
 - sensitive to very different time scales (1 bunch Xing to 1 ring turn),
 - o covering from the immediate vicinity of the beam pipe to the radius of the calorimeters, and in many cases always active (including during injection).
 - However the μ halo at large radius (R > 1 m) remains difficult/cumbersome to characterize experimentally.
- The definition, and the implementation, of normalized BFoM's still is at a very early stage. Progress requires
 - on agreed-upon set of machine simulations (exclusive rather than weighted)
 - o identifying suficient manpower in ATLAS
- Preliminary proposals have been presented with respect to
 - Information flow from LHC to ATLAS (& v-v)
 - o special and/or undesirable beam conditions during early running

Credits & acknowledgements

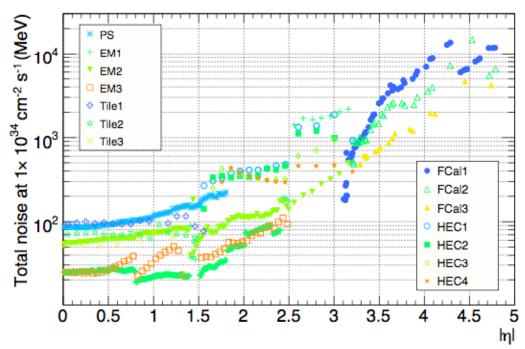
 The material shown above is a modest attempt at summarizing the discussions that started two months ago in the ATLAS <u>Background Working Group</u>:


W. Bell, D. Berge, A. Brandt, K. Einsweiler, R. Goncalo, P. Grafstrom,
V. Hedberg, T. Kawamoto, R. Kwee, T. Lecompte, G. Mikenberg, M. Mikuz,
G. Mornacchi, T. Pauly, J. Rutherfoord, J. Schieck, M. Shupe, A. Stradling,
V. Talanov, W. Trischuk, T. Wengler, S. Wenig, and M. Wessels.
N. Ellis, M. Huhtinen, J. Schieck, and C. Young also contributed directly to this

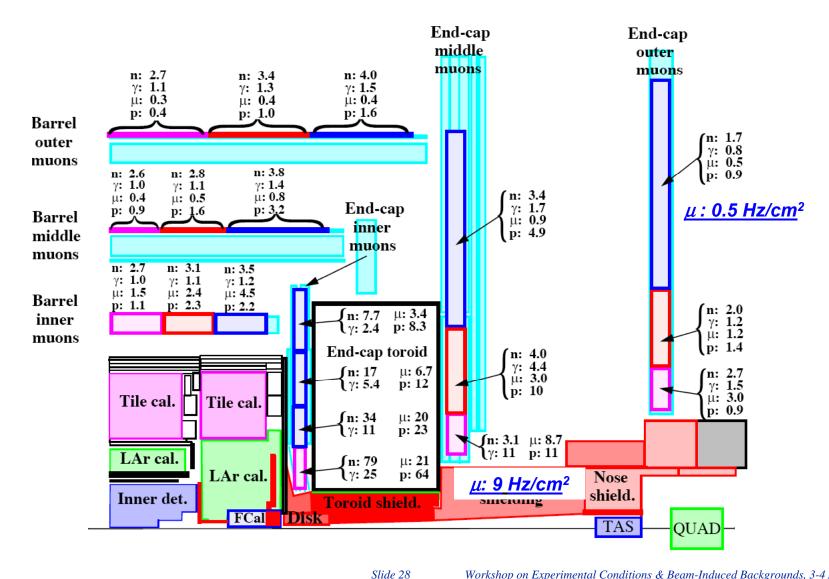
presentation.


• There was no way, in the time imparted, to do justice to the efforts of the teams - and of the individuals - who built, simulated, tested, installed and commissioned the various components of the ATLAS background-related instrumentation (detector protection system, BIS, BCM, BLMs, radiation & dose monitors, MBTS,...)

Backup slides

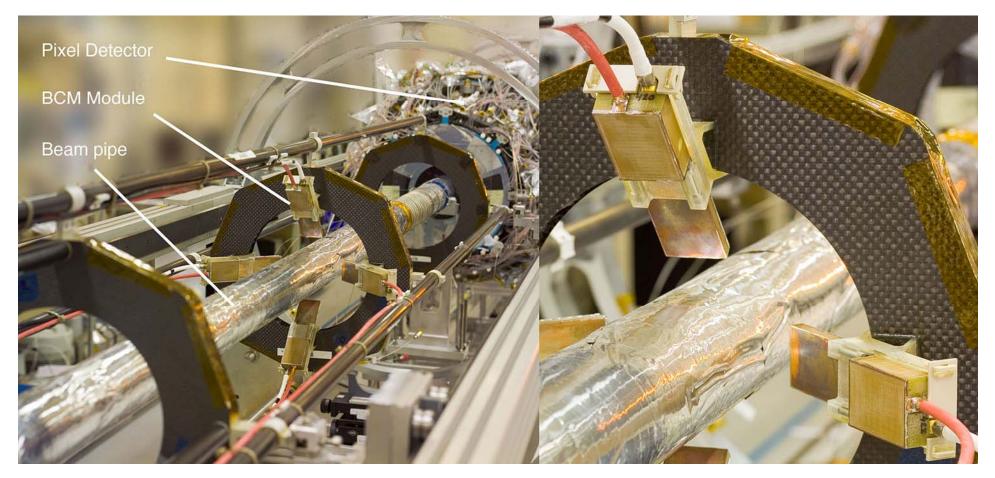

Expected dose distribution in ATLAS

Total ionising dose per year $(\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1})$ calculated by GCALOR in one quarter of the central part of the detector. The locations of the inner detector sub-systems, of the different calorimeters and of the inner end-cap muon stations are indicated. The scale on the left gives the integrated dose per year corresponding to the various isolines.



Noise/channel in ATLAS calorimeters

Particle fluxes from pp interactions, in the various muon stations at $\mathcal{L} = 10^{34}$ cm⁻² s⁻¹

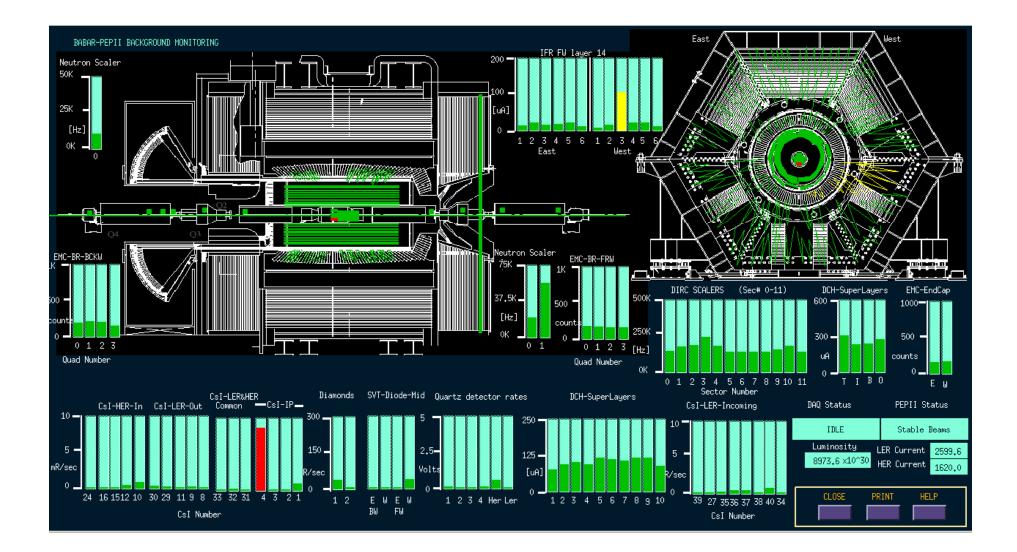

as predicted by GCALOR. The neutron & photon fluxes are in kHz/cm², the muon & proton fluxes in Hz/cm².

The BCM is installed in ATLAS

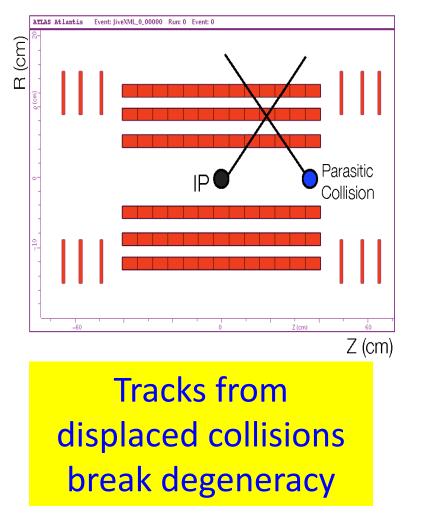
o 4 BCM stations on each side of the Pixel detector

- Mounted on Pixel support structure at z = +/- 183.8 cm and r = 5.5 cm
- Each station: 1cm² detector element + Front-end analog readout

Trigger-like background observables from ATLAS: comments


o MBTS

- halo trigger relatively easy to impelement (may require some NIM elx)
 - > distinguishes muons from beam 1 and from beam 2 through coincidence timing
- o timing distribution could be made available


ο Forward-μ halo trigger:

- on the outgoing side: "easy" (although a dedicated configuration, incompatible with standard running)
- two-side trigger (A-C) <u>may</u> be possible (no consensus...), but hard & invasive

Example of detector background display

Displaced Collisions for Alignment

- some systematic deformations of ID leave χ^2 from tracks from IP unchanged
 - e.g. inflation along the beam pipe
 - no sensitivity for track-based alignment

• different track topology help to gain important additional information