

Estimates of residual gas pressure in the LHC

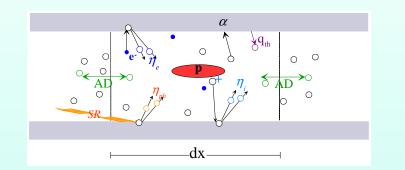
Adriana Rossi AT-VAC

Workshop on Experimental Conditions and Beam Induced Detector Backgrounds

03-04 April 2008

Outline

- Vacuum calculations for LHC runs
 - Input parameters
- Machine layout
- Results for "static pressure" in the experimental LSS and comparison with measured values
- Comparison between filling factors
- Arcs
- Effect of collimators
- Ion operations
- Discussion
- Questions


Vacuum calculations for LHC runs

Dynamic effects in LHC

- Beam induced phenomena : <u>ion</u>, <u>electron</u> and <u>photon</u> induced molecular desorption.
- Ion induced desorption instability
- Electron cloud build up

Simulations code

- Cylindrical geometry
- Time invariant parameters
- Multi-gas model
- Finite elements

Input parameters depend on:

- Incident energy
- State of the surface (bakedunbaked)
- Dose

The sources of gas depend on the surface properties and on the operating scenarios.

Estimates are only a snapshot of specific conditions

Photon Induced gas Desorption

[Gröbner et al. Vacuum, Vol 37, 8-9, 1987]

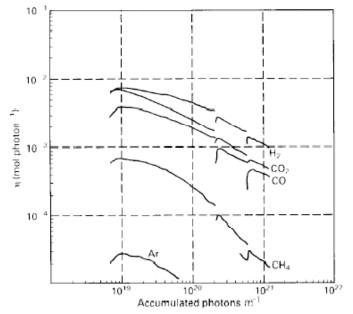


Figure 1. The molecular desorption yield η (molecules per incident photon) as a function of the accumulated photons per m for a LEP sample vacuum chamber exposed to synchrotron light at DCI (Orsay).

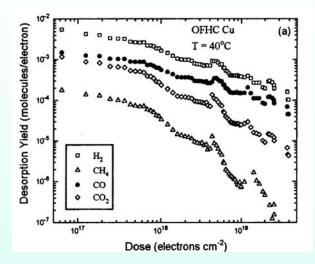
Evolution with dose

10-2 H2 Electrodeposited Cu 0 Å CO2 Photodesorption Yield (mol/photon) co H2O 10 6 CH4 ۸ Δ 8 10 Δ Δ Δ 10 10 100 1000 Critical Energy (eV)

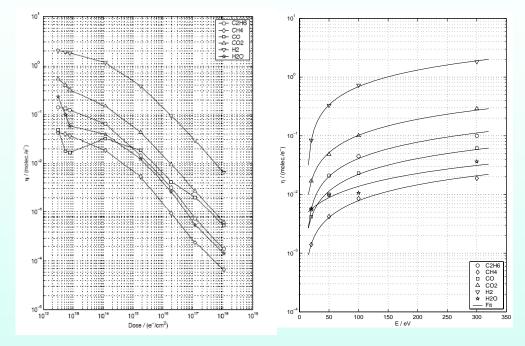
FiG. 5. Photon-induced gas desorption yields from unbaked electrodeposited copper at different critical energies.

Energy dependence

Detector Background WS – 3-4 April '08


Adriana Rossi AT/VAC

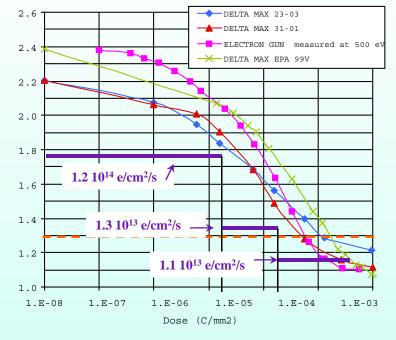
[Gómez-Goñi et al., JVST 12(4), 1994]


Electron Induced Gas Desorption

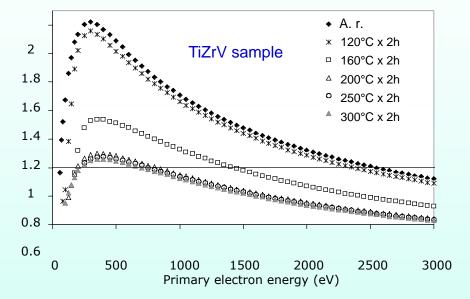
J. Gómez-Goñi et al., JVST A 15(6), 1997 Copper baked at 150°C

Evolution with dose

G. Vorlaufer et al., Vac. Techn. Note. 00-32 Copper Unbaked


Evolution with dose

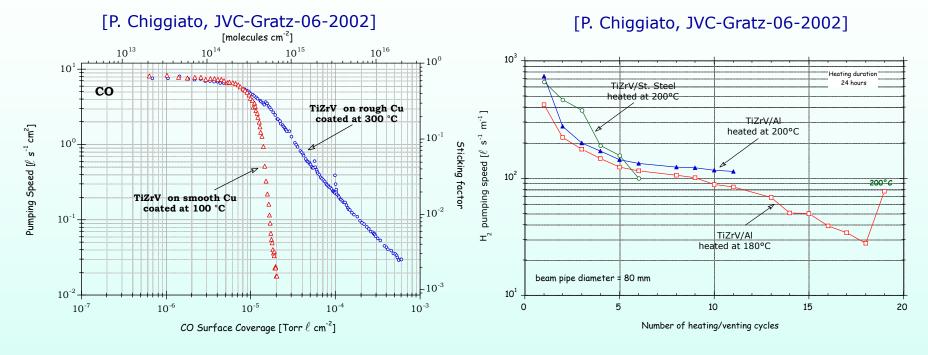
Energy dependence



Secondary electron emission

N. Hilleret et al., LHC Proj. Rep. 472, 2001 For "as received" Copper and electron energy of 99eV and 500eV

C. Scheuerlein et al., JVST A 18(3), May/Jun 2000.


Evolution with dose

Energy dependence at different activation temperature

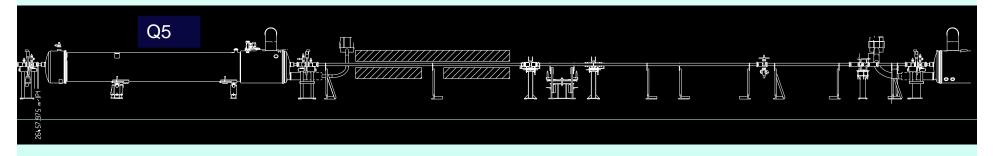
At few 10⁻¹⁰ p/b no e-cloud expected

NEG properties

Pumping speed

Aging

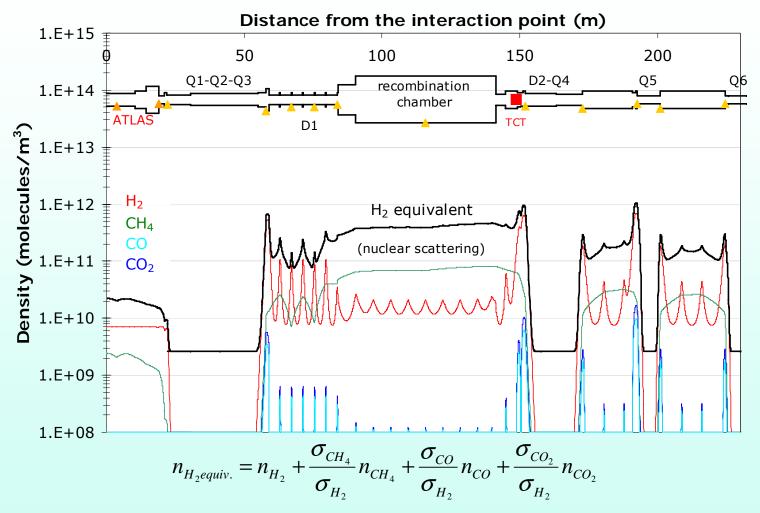
Detector Background WS – 3-4 April '08


Adriana Rossi AT/VAC

Machine layout

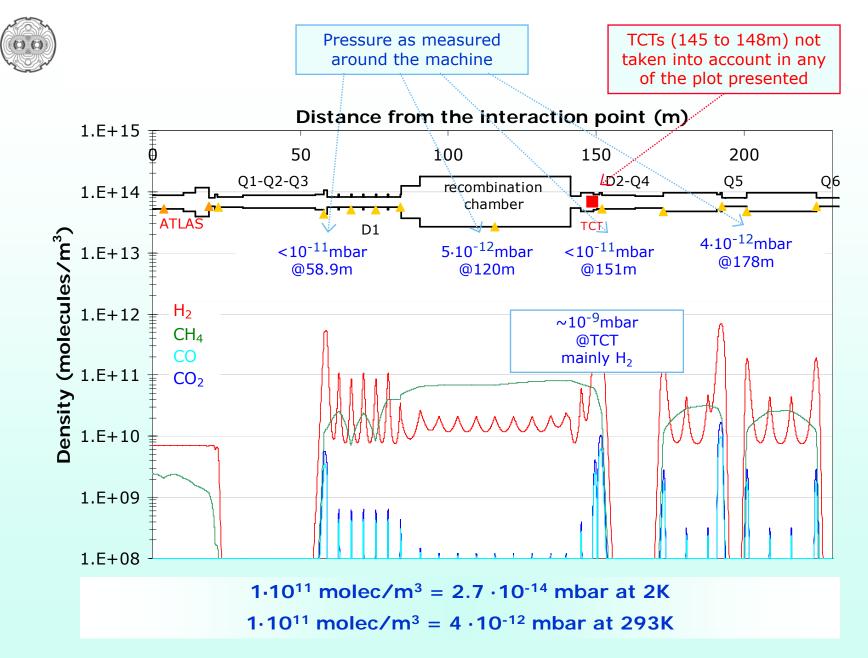
 Cold magnets provided with beam screen actively cooled between 5 and 20K :

- Avoids ion induced pressure instability and guarantees a low background pressure.
- In the CB at 4.5K, H2 will be cryosorbed on dedicated materials placed on the rear of the BS.
- LSS room temperature sections are copper chambers coated with ~ 1 to 2 μ m of TiZrV sputter NEG
 - NEG coating is employed to prevent electron multipacting, given the low secondary electron yield after activation at a temperature between 160 and 200°C for 2 hours, and to ensure low desorption and the gas pumping necessary for ion induced desorption stability and low background pressure
 - All room temperature sections are being baked-activated



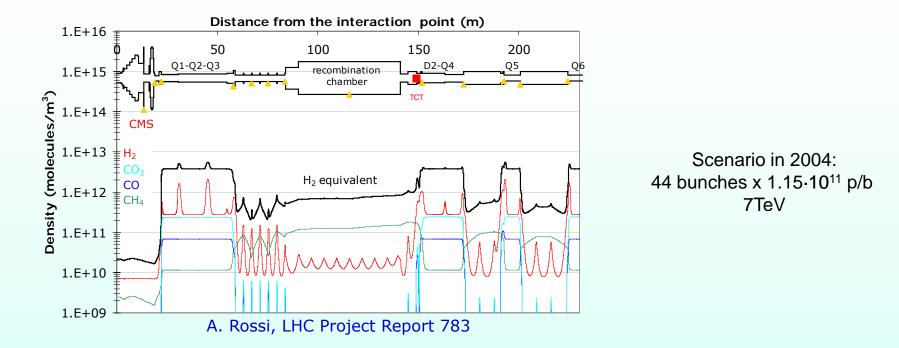
Detector Background WS – 3-4 April '08

Adriana Rossi AT/VAC


LSS 1/5 static pressure (w/o dynamic effects)

Nuclear scattering cross section: σ_{CH4}/σ_{H2} =5.4; σ_{CO}/σ_{H2} =7.8; σ_{CO2}/σ_{H2} =12

Detector Background WS – 3-4 April '08


Adriana Rossi AT/VAC

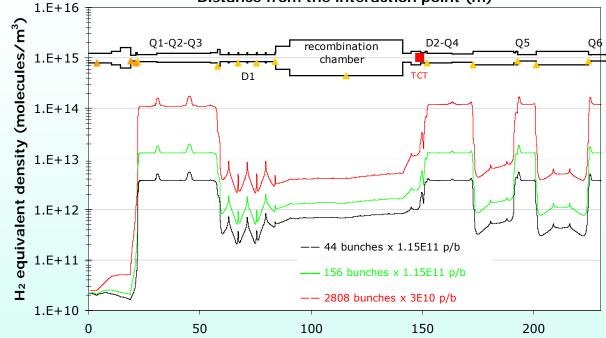
Adriana Rossi AT/VAC

LSS 1 at machine startup

Present scenario (MARIC)

• 2008: 43 bunches – few 10^{10} p/b – 5TeV >>> photon flux reduced by ~50

>>> expected pressure profile / static


- 2008/9: 43 bunches few 10¹⁰ p/b 7TeV
- 2009: higher number of bunches

LSS 1

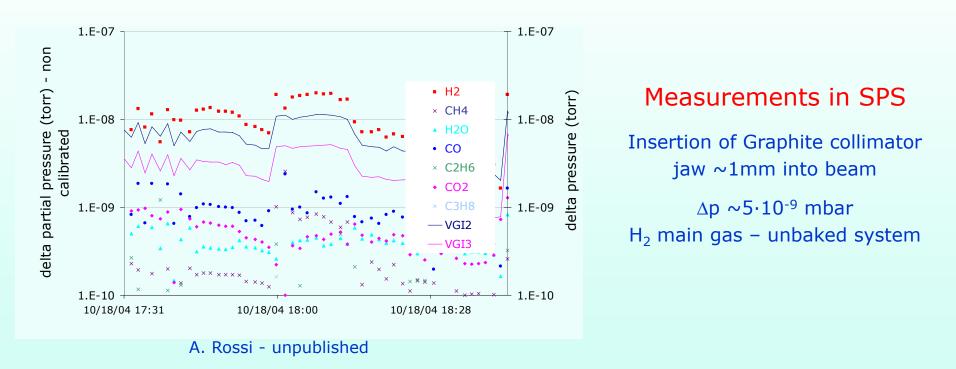
- 44 x 1.15·10¹¹ p/b - 156 x 1.15·10¹¹ p/b - 2808 x 3·10¹⁰ p/b

A. Rossi, LHC Project Report 783 Distance from the interaction point (m)

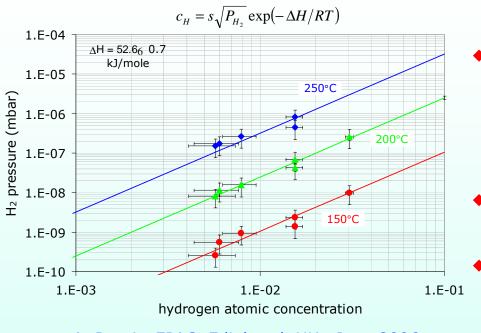
Calculation parameters

- NEG with 1/10 of maximum pumping speed (to be conservative)
- Desorption yields as for surfaces never exposed to photons-electrons

Is this the upper limit?


- Pressure estimates have a factor ~ 2 uncertainties and depends on assumptions made for calculations
- Photon flux is an upper limit
- The desorption yields considered on Cu and uncoated parts corresponds to what is expected at the beginning period
 - The yields decrease with dose (ph and e- bombardment) : conditioning
- Cryo-pumping is neglected (i.e. beam screen pumps only via pumping holes)

The given estimate is the upper limit


Effect of collimators

- Collimator outgassing fully characterised: main gas H₂
- Experience to be made during operation: outgassing depends on jaw temperature

Effect of collimators: heating of vacuum chamber due to energy deposition from particle losses

A. Rossi - EPAC, Edinburgh UK, June 2006

- Temperature rise estimated to 150°C (R. Assmann) in momentum and betatron cleaning insertions, at nominal intensity
- The pressure will recover when back to room temperature
- Standard section atomic concentration of $<1\cdot10^{-3}$ H₂ pressure at 150°C $\leq 10^{-10}$ mbar

MBW worst case scenario - atomic concentration of 2.10⁻²

- System not pumped from extremities
- In proximity of graphite collimators, after 9 month operations

 H_2 pressure at 150°C ~ 5.10⁻⁹ mbar < 100h beam lifetime

COLD ARCS (with proton beam)

Assumptions

- Beam screen pumping only via holes (as in LSS)
- Photon critical energy about 3 x in LSS
- Photon (and photoelectrons) flux about 10 x in LSS
- Photon and photo-electron gas desorption about the same
- Results
- Pressure expected in the arcs $\leq 20 \text{ x}$ in the cold sections of the LSS

Residual gas pressure for ions operations

A. Rossi, presented at I-LHC meeting on December 9, 2004

• Gas sources: only ions from beam losses

- Residual gas ionisation neglected + ion estimated energy ~ 2eV (no gas desorption expected);
- Synchrotron radiation desorption neglected at critical energy ~ 2.8eV
- No photoelectron or electron multipacting expected (low current and long bunch spacing)
- Desorption yield for ions ~ 10⁵ molecules/ion [E. Mahner, lhc-project-report-798] for each gas species considered (H₂, CH₄, CO and CO₂)
- Beam screen holes pumping only = neglect cryopumping (worst case scenario)
- Ion losses $2 \cdot 10^6$ ions/turn >>> density for 100h beam lifetime

real lifetime < 2s

- Estimated localised losses for quench limit
 - 200x100 beam lifetime if lost over a sec.
 - 2h if lost in 1 turn, but pressure recovery <1s

Vacuum not expected to be limiting factor to beam lifetime

Discussion

- Calculations of residual gas pressure strongly depend on surface properties and on the operating configuration, and give only a snapshot in time.
- Estimates made so far are for stable beam and do not include collimators.
 - Their effect is well understood on the static pressure.
 - Long term and beam effects will be studied.
- In the cold arc:
 - The gas density for 100h lifetime (10¹⁵ H₂ equiv./m³) gives an upper limit and is the value to be used for experiment b.g. estimates.
 - The gas composition is expected to be similar to what calculated in the LSS.

Discussion

Machine layout will evolve:

- Part of 2nd phase collimators under design (2010)
- Inner triplets with larger aperture (2012/2013)
- The pressure during stable beam may also depend on a transient during the beam cycle that causes particle losses, beam displacement, collimator setting, ...

In order to estimate the gas density profile it is necessary to study case by case.

Questions - Answers

- Is the lifetime a useful information to renormalise the pressure estimate:
 - The vacuum group will be working close to the operation to learn how to use this information
- What happens if we have a He leak in the arcs:
 - It is expected to have a magnet quench before any effect of pressure can be seen.
 - BLM will give us some information. We have to learn if beam lifetime can give us an early warning
- What could go wrong:
 - Fast temperature gradients could open leaks (in LEP, with beam at 80GeV due to synchrotron radiation hitting transitions)
 - Damage caused by loss of beam
 - **....**
- Can HOM in the experiments cause temperature rise?
 - No, according to estimates (L. Vos) made at time of design: Cu coating, conical transition, RF contact, RF screen for pumps
 - Matter under investigation