Isolated photons with jets at HERA and proton PDF fit

Achim Geiser, Oleg Kuprash

DESY

June 26, 2013 HERAFitter User's meeting

Outline

- Details: data & theory
- Implementation in HERAFitter
- Results of the fits

Isolated photons and proton PDFs

LO, $\mathcal{O}(\alpha^3)$ and fragmentation

The information on the proton PDF from measurements of isolated photons could be complementary to measurements from inclusive DIS, since *up*- and *down*- quarks contribute with different weights

Data & Theory

Data: ZEUS Collaboration (Abramowicz, H. et al.). Measurement of isolated photons accompanied by jets in deep inelastic ep scattering, Phys Lett B 715 (2012) 88-97

Theory: A.Gehrmann-De Ridder, G.Kramer, H.Spiesberger. Photon plus jet cross sections in deep inelastic ep collisions at order $\mathcal{O}(\alpha^2\alpha_s)$, Nucl.Phys. B578 (2000) 326-350

+ running α_{em} from F. Jegerlehner. Electroweak Effective Couplings for Future Precision Experiments, DESY 11-117

Phase Space

- $10 < Q^2 < 350 \text{ GeV}^2$
- $\blacksquare 4 < E_T^{\gamma} < 15 \text{ GeV}$
- $-0.7 < \eta^{\gamma} < 0.9$
- $\frac{E^{\gamma}}{E^{jet\ containing\ \gamma}} > 0.9$
- $E_T^{jet} > 2.5 \text{ GeV}$
- $-1.5 < \eta^{jet} < 1.8$

Updated theory describes the data well \Rightarrow can be used to fit PDFs

Fast calculations of the NLO predictions

- original code by H. Spiesberger et al. 5-8 hours of CPU (Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz) time per bin
- → for practical reasons calculations need to be done faster

The procedure:

1. Create table of perturbative coefficients in bins of x and μ_F

$$\begin{array}{l} p_{a,i,j}^{\mathrm{LO}} = \sigma_{a,i,j}^{\mathrm{LO}}/f_a(x_i,\mu_{F,j}) \text{ for LO (a runs over flavours)} \\ p_{a,i,j}^{\mathrm{NLO}} = \sigma_{a,i,j}^{\mathrm{NLO}}/f_a(x_i,\mu_{F,j})/\alpha_s(\mu_R = \mu_{F,j}) \text{ for NLO} \end{array}$$

The tables were created for each subprocess for each bin of the cross sections.

The number of bins in x and μ_F has been chosen in order to have the precision of typically 1-2 %

2. Convolve coefficients with PDFs

$$\sigma = \sum\limits_{a,i,j} p_{a,i,j}^{\mathrm{LO}} \cdot f_a(x_i,\mu_{F,j}) + \sum\limits_{a,i,j} \alpha_s(\mu_R = \mu_{F,j}) \cdot p_{a,i,j}^{\mathrm{NLO}} \cdot f_a(x_i,\mu_{F,j})$$

< 1 s of CPU time per bin

the data are included within framework of the HERAFitter program

NLO predictions and PDFs

Cross section at parton level:

Main contribution to the NLO cross section is from $u, \ \bar{u}, \ c$ and \bar{c}

Including in HERAFitter

Files added:

• src/epg.f

(fill THEO array with theoretical cross sections)

• directory epg/

(in analogy to Krzysztof Nowak's interface to FastNLO):

```
epg/include/EPGHeraFitter.h,
epg/src/EPGHeraFitter.cc,
epg/src/EPGInterface.cc
```

- epg/src/Makefile.am
- datafiles/hera/ZEUS_epg.dat
- the grids

Files modified:

- src/theory_dispatcher.f
- src/init_theory.f
- Makefile.am
- src/Makefile.am
- configure.am

Run autoreconf, then install as usual

Results: including E_T^{γ} cross section (1/3)

```
Results for:
                                                                Results for:
      fit default 13p hesse
                                                                fit epg et 13p hesse
      Fitted 13 parameters:
                                                                Fitted 13 parameters:
      (most reliable available method: none
                                                                (most reliable available method; none
      giving confidence in errors: none)
                                                                giving confidence in errors: none)
               'Bq' = -0.171 \pm 0.153
                                                                    1: 'Bq' = -0.191 \pm 0.145
              'Cq' = 7.468 \pm 1.022
                                                                        'Cq' = 7.300 \pm 1.000
         3: 'Aprig' = 1.060 ± 0.561
                                                                    3: 'Aprig' = 1.042 \pm 0.506
             'Bprig' = -0.275 \pm 0.083
                                                                    4: 'Bprig' = -0.289 \pm 0.079
              'Buv' = 0.660 \pm 0.032
                                                                         'Buv' = 0.659 \pm 0.033
              'Cuv' = 4.681 \pm 0.218
                                                                    6: 'Cuv' = 4.681 \pm 0.217
              'Euv' = 9.893 ± 2.311
                                                                    7: 'Euv' = 9.954 ± 2.326
              'Bdv' = 0.662 \pm 0.078
                                                                    8: 'Bdv' = 0.661 \pm 0.078
         9: 'Cdv' = 4.409 \pm 0.723
                                                                    9: 'Cdv' = 4.375 \pm 0.711
        10: 'Clibar' = 2.436 \pm 0.546
                                                                  10: 'Clibar' = 2.426 \pm 0.546
        11: 'ADbar' = 0.161 ± 0.008
                                                                  11: 'ADbar' = 0.161 \pm 0.008
        12: 'BDbar' = -0.166 ± 0.007
                                                                   12: 'BDbar' = -0.166 ± 0.007
        13: 'CDbar' = 2.326 + 0.754
                                                                   13: 'CDbar' = 2.379 + 0.781
First iteration
                  591.72
                             579
                                    1.022
                                                               First iteration
                                                                                    595.84
                                                                                             583
                                                                                                      1.022
After minimisation
                  570.55
                                    0.985
                                                               After minimisation
                                                                                    574.43
                                                                                                      0.985
Partial chi2s
                                                               Partial chi2s
      107 08
              145 NC HERA-I H1-ZEUS combined
                                                                     107 08
                                                                               145 NC HERA-I H1-ZEUS combined
      413.72 379 NC HERA-I H1-ZEUS combined
                                                                     413.71
                                                                               379 NC HERA-I H1-ZEUS combined
              34 CC HERA-I H1-ZFUS combined
       19.95
                                                                     19.99
                                                                                34 CC HFRA-I H1-ZFUS combined
                                                    e-n
      29.81 34 CC HERA-I H1-ZEUS combined
                                                   e+p.
                                                                       29.8
                                                                                34 CC HERA-I H1-ZFUS combined
                                                                       2.15
                                                                                4 ZEUS isolated photons with jets
   xq(x) = A_g x^{B_g} \cdot (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}
                                                               Correlated
                                                                          Chi2
                                                                                     1.697
  xu_{\nu}(x) = A_{\nu} x^{B_{u_{\nu}}} \cdot (1-x)^{C_{u_{\nu}}} \cdot (1+D_{\nu} x + E_{\nu} x^{2})
                                                               Systematic
                                                                          shifts
  xd_v(x) = A_d x^{B_{d_v}} \cdot (1-x)^{C_{d_v}}
                                                                           Shift
                                                                                          Error
                                                                                                           Type
                                                               Name
                                                                            -1.3027 +/-
                                                                                           0.6545
                                                                                                           ·N·M
                                                               1 egiscale
  x\bar{U}(x) = A_{\bar{v}}x^{B_{\bar{v}}} \cdot (1-x)^{C_{\bar{v}}}
                                                               2 dzrange
                                                                            -0.0092 +/-
                                                                                           0.9999
                                                                                                           :N:M
  x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}} \cdot (1-x)^{C_{\bar{D}}}
```

Results: including E_T^{γ} cross section (2/3)

• Two fit results are consistent

Results: including E_T^{γ} cross section: uncertainties (3/3)

• Reduction of the uncertainties mainly in U PDF

Summary

- Data on isolated photon with jets production in DIS are successfully added to the HERAFitter
- Isolated photon data together with inclusive DIS data (as for HERAPDF1.0) have been used in the fit
- The fit with isolated photon data included shows consistent result with inclusive DIS results
- The uncertainties of the PDFs noticeably reduced

More checks to be done:

- free u and d as much as possible in the fit
- try different parametrisation styles
- ...

We thank Hubert Spiesberger for kindly providing the codes for the NLO predictions and Voica Radescu for help in implementing new codes and data in the HERAFitter

Backup

Including E_T^{γ} cross section: systematics shifts

Including η^{γ} cross section: systematics shifts

Including η^{γ} cross section: systematics shifts

fit_epg_et_jet_13p_hesse (mod.)

Input data: E_T^{γ}

* The data are taken from:

```
* By ZEUS Collaboration (H. Abramowicz et al.). DESY-12-089, June 2012. 25pp.
* Published in Phys. Lett. B 715, Issue 1-3:88-97,2012.
* e-Print: arXiv:1206.2270 [hep-ex]
* The systematical uncertainties symmetrized in a different way than in paper. Here largest deviation is taken,
\star whereas in the paper the mean of upper and bottom uncertainties was taken.
&Data
  Name = 'ZEUS isolated photons with jets 0405e, 06e, 0607p data'
  Reaction = 'epg'
  ND\Delta T\Delta = 4
  NColumn = 8
  ColumnType = 3*'Bin','Sigma',4*'Error'
  ColumnName = 'etmin', 'etmax', 'HadrCorr', 'Sigma', 'stat', 'egjscale', 'dzrange', 'uncor'
  NInfo = 4
   DataInfo = 319..
                       1..
                                         to be updated
  CInfo = 'sgrt(S)', 'PublicationUnits', 'MurDef', 'MufDef'
   IndexDataset = 200
  TheoryInfoFile = 'theoryfiles/fnh4002.tab'
                                                           !new light grids
  TheoryType = 'user grid'
  Percent = False, False
&End
4.0 6.0 0.838210272 2.38 0.18
                                 0.11 0.13
                                                   0.04
6.0 8.0 0.889243789 1.28 0.10 0.06 0.020 0.03
8.0 10.0 0.935850904 0.62 0.08 0.04 0.029 0.014
10.0 15.0 0.990858773 0.26 0.03
                                 0.022
                                          0.010
                                                    0.0005
```

*"Measurement of isolated photons accompanied by jets in deep inelastic ep scattering"