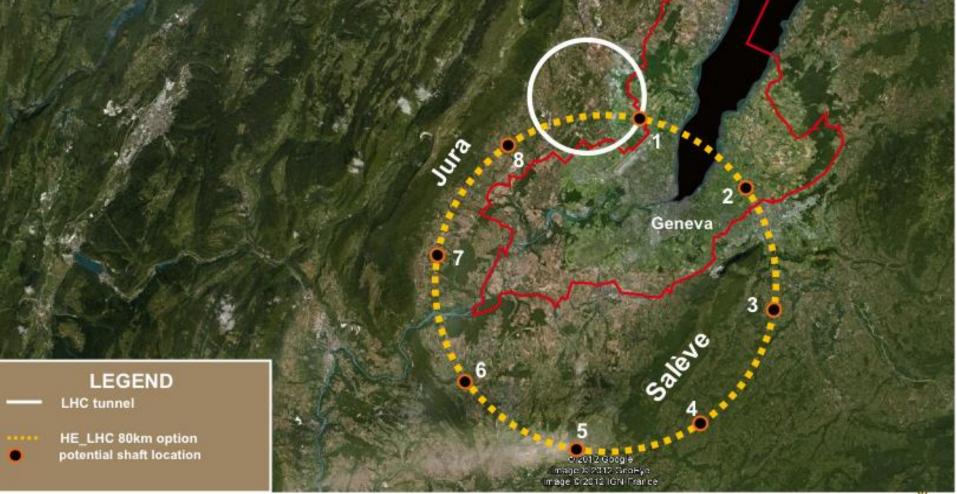
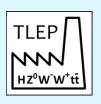
TLEP The Neutrino Connection



Alain Blondel TLEP design study r-ECFA 2013-07-20

eneva



NEUTRINO CONNECTIONS

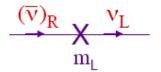
The only known BSM physics at the particle physics level is the existence of neutrino masses

- -- There is no unique solution for mass terms: Dirac only? Majorana only? Both?
- -- if Both, existence of (2 or 3) families of massive right-handed (~sterile) N_i , \overline{N}_i neutrinos is predicted («see-saw» models) but masses are unknown (eV to 10¹⁰GeV)
- -- Arguably, sterile neutrinos are the most likely 'new physics' there is.

Adding masses to the Standard model neutrino 'simply' by adding a Dirac mass term $m_D v_L \overline{v}_{R'} \qquad m_D \overline{v}_L v_R \qquad \qquad \underbrace{\nabla_R}_{X} \underbrace{\nabla_L}_{Y}$

<u>No SM symmetry prevents adding then a term like</u>

 $m_M \overline{v_R}^c v_R$



mD

and this simply means that a neutrino turns into a antineutrino (the charge conjugate of a right handed antineutrino is a left handed neutrino!)

See-saw in the most general way :

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} \qquad \begin{array}{l} \mathbf{M}_R \neq \mathbf{0} \\ \mathbf{m}_D \neq \mathbf{0} \\ \mathbf{Dirac + Majorana} \\ \mathbf{M}_R = \mathbf{0} \\ \mathbf{M}_R = \mathbf{0} \\ \mathbf{M}_R = \mathbf{0} \\ \mathbf{Dirac only}, (like e \cdot vs e +): \\ \mathbf{V}_L, \mathbf{V}_R, \overline{\mathbf{V}_R}, \overline{\mathbf{V}_L} \end{array} \qquad \begin{array}{l} \mathbf{M}_R \neq \mathbf{0} \\ \mathbf{m}_D = \mathbf{0} \\ \mathbf{M}_L = \mathbf{0} \\ \mathbf{M}_R = \mathbf{0} \\ \mathbf$$

I_{weak}= 1/2 0 1/2 0 4 states of equal masses Some have I=1/2 (active) Some have I=0 (sterile)

 $\mathbf{M}_{\mathbf{R}}$

 ν_L

m

$$\mathbf{M}_{R} \neq 0$$

$$\mathbf{m}_{D} = 0$$

$$\mathbf{M}_{ajorana \text{ only}}$$

$$\mathbf{I}_{weak} = \begin{array}{c} \mathbf{V}_{L} & \overline{\mathbf{V}}_{R} \\ \mathbf{V}_{L} & \overline{\mathbf{V}}_{R} \\ \mathbf{1}_{2} & \mathbf{1}_{2} \\ 2 \text{ states of equal masses} \\ \text{All have} \quad \mathbf{I} = \mathbf{1}/2 \text{ (active)} \end{array}$$

$$m_{D} \neq 0$$

$$\underline{\text{Dirac + Majorana}}$$

$$V_{\text{reak}} = V_{L} N_{R} \overline{V}_{R} N_{L}$$

$$\frac{1}{2} 0 \frac{1}{2} 0$$

$$4 \text{ states }, 2 \text{ mass levels}$$

$$m1 \text{ have } I=1/2 (\text{~active})$$

$$m2 \text{ have } I=0 (\text{~sterile})$$

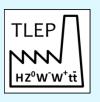
ENSI

$$\tan 2\theta = \frac{2 m_D}{M_R - 0} \ll 1$$
$$m_{\nu} = \frac{1}{2} \begin{bmatrix} (0 + M_R) - \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \simeq -m_D^2/M_R$$
$$M = \frac{1}{2} \begin{bmatrix} (0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \end{bmatrix} \simeq M_R$$
general formula if $m_D \ll M_R$

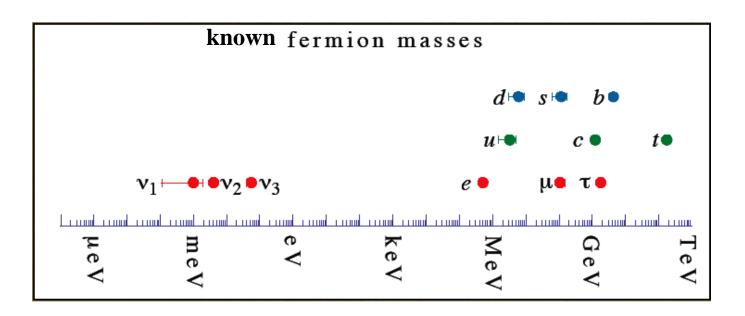
TLEP

 m_D associated with EWSB, part of SM, bounded by $v/\sqrt{2} = 174 \text{ GeV}$ M_R is SM singlet, does whatever it wants: $\Rightarrow M_R \gg m_D$ Hence, $\theta \simeq m_D/M_R \ll 1$ Note that this is not necessary as we have <u>no idea</u> of m_D and M_R! $\nu = \nu_L \cos \theta - N_R^c \sin \theta \simeq \nu_L$ with mass $m_\nu \simeq -m_D^2/M_R$ $N = N_R \cos \theta + \nu_L^c \sin \theta \simeq N_R$ with mass $M \simeq M_R$

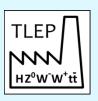
Alain Blondel TLEP design study r-ECFA 2013-07-20



$m_v = \frac{{m_D}^2}{M}$ has been invoked to explain the smallness of active neutrino masses



Alain Blondel TLEP design study r-ECFA 2013-07-20

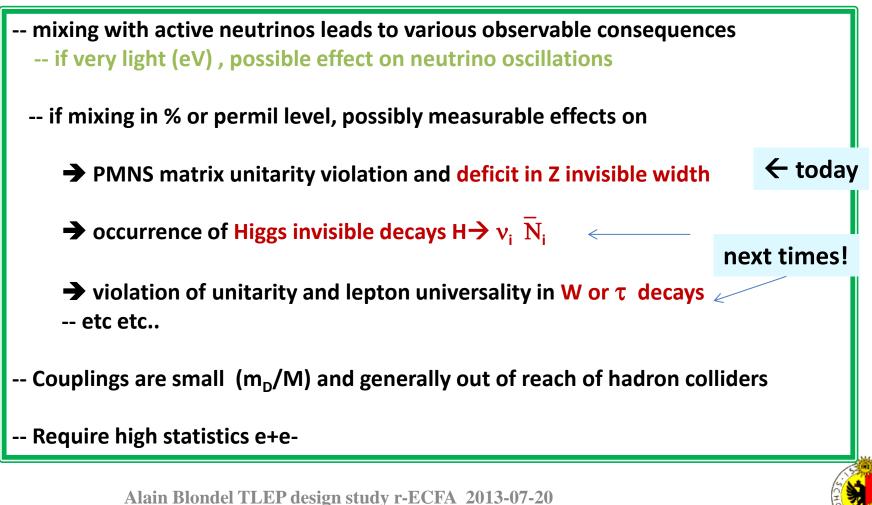


Manifestations of sterile neutrinos

 $v = vL\cos\theta - N^c_R\sin\theta$

 $N = N_R \cos\theta + v_L^{c} \sin\theta$

v = light mass eigenstate N = heavy mass eigenstate $\neq v_L$ which couples to weak interaction



IPAC'13 Shanghai

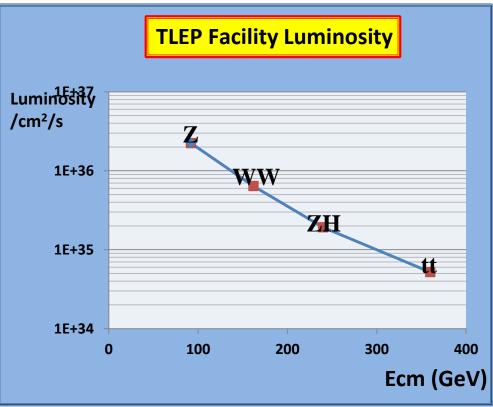
Table 1: TLEP parameters at different energies

	TLEP	TLEP	TLEP	TLEP
	Z	W	Н	t
E _{beam} [GeV]	45	80	120	175
circumf. [km]	80	80	80	80
beam current [mA]	1180	124	24.3	5.4
#bunches/beam	4400	600	80	12
#e-/beam [10 ¹²]	1960	200	40.8	9.0
horiz. emit. [nm]	30.8	9.4	9.4	10
vert. emit. [nm]	0.07	0.02	0.02	0.01
bending rad. [km]	9.0	9.0	9.0	9.0
κε	440	470	470	1000
mom. c. $\alpha_{c} [10^{-5}]$	9.0	2.0	1.0	1.0
Ploss.SR/beam [MW]	50	50	50	50
$\beta_x[m]$	0.5	0.5	0.5	1
β_{ν}^{*} [cm]	0.1	0.1	0.1	0.1
$\sigma_x^*[\mu m]$	124	78	68	100
$\sigma_{y}^{*}[\mu m]$	0.27	0.14	0.14	0.10
hourglass F_{hg}	0.71	0.75	0.75	0.65
E ^{SR} loss/turn [GeV]	0.04	0.4	2.0	9.2
V _{RF} , tot [GV]	2	2	6	12
$\delta_{\max, RF}$ [%]	4.0	5.5	9.4	4.9
ζ_x/IP	0.07	0.10	0.10	0.10
ξ_{ν}/IP	0.07	0.10	0.10	0.10
f _s [kHz]	1.29	0.45	0.44	0.43
E _{acc} [MV/m]	3	3	10	20
eff. RF length [m]	600	600	600	600
f _{RF} [MHz]	700	700	700	700
$\frac{\delta^{\text{SR}}_{\text{rms}}[\%]}{\sigma^{\text{SR}}_{\text{z,rms}}[\text{cm}]}$	0.06	0.10	0.15	0.22
$\sigma^{SR}_{z.rms}[cm]$	0.19	0.22	0.17	0.25
\mathcal{L} /IP[10 ³² cm ⁻² s ⁻¹]	5600	1600	480	130
number of IPs	4	4	4	4
beam lifet. [min]	67	25	16	20

TLEP: A HIGH-PERFORMANCE CIRCULAR e⁺e⁻ COLLIDER TO STUDY THE HIGGS BOSON

M. Koratzinos, A.P. Blondel, U. Geneva, Switzerland; R. Aleksan, CEA/Saclay, France; O. Brunner, A. Butterworth, P. Janot, E. Jensen, J. Osborne, F. Zimmermann, CERN, Geneva, Switzerland; J. R. Ellis, King's College, London; M. Zanetti, MIT, Cambridge, USA.

http://arxiv.org/abs/1305.6498.



CONSISTENT SET OF PARAMETERS FOR TLEP TAKING INTO ACCOUNT BEAMSTRAHLUNG

Will consider also : x10 upgrade with e.g. charge compensation? (suppresses beamstrahlung and beam-beam blow up)

Alain Blondel TLEP Workshop #6 2013-10-16

In October 1989 LEP determined that the number of neutrino families was 3.11±0.15

In Feb 1990 Cecilia Jarlskog commented that this number could smaller than 3 if the left handed neutrino(s) has a component of (a) heavy sterile neutrino(s) which is kinematically suppressed or forbidden

Alain Blondel TLEP Workshop #6 2013-10-16

NEUTRINO COUNTING AT THE Z-PEAK AND RIGHT-HANDED NEUTRINOS

C. JARLSKOG

CERN, CH-1211 Geneva 23, Switzerland and Department of Physics, University of Stockholm, S-113 46 Stockholm, Sweden

Received 20 February 1990

We consider the implications of extending the minimal standard model, with *n* families of quarks and leptons, by introducing an arbitrary number of right-handed neutrinos, for neutrino-counting via the "invisible width" of the Z. It is shown that the effective number of neutrinos, $\langle n \rangle$, satisfies, the inequality $\langle n \rangle \leq n$, where $\langle n \rangle$ is defined by $\Gamma(Z \rightarrow neutrinos) \equiv \langle n \rangle \Gamma_0$ and Γ_0 is the standard width for one massless neutrino. Thus, in the case of three families, the neutrino-counting can give a result which is less than three, if there are right-handed neutrinos.

Theorem.

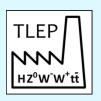
In the standard model, with *n* left-handed lepton doublets and N-n right-handed neutrinos, the effective number of neutrinos, $\langle n \rangle$, defined by

 $\Gamma(\mathbf{Z} \rightarrow \text{neutrinos}) \equiv \langle n \rangle \Gamma_0$,

where Γ_0 is the standard width for one massless neutrino, satisfies the inequality

Alain Blond $\langle n \rangle \leq n$.

(15)



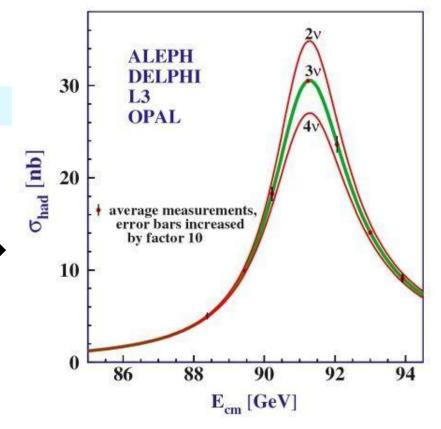
At the end of LEP: Phys.Rept.427:257-454,2006

 $N_v = 2.984 \pm 0.008$

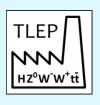
- **2** σ :^) !!

This is determined from the Z line shape scan and dominated by the measurement of the hadronic cross-section at the Z peak maximum →

The dominant systematic error is the theoretical uncertainty on the Bhabha cross-section (0.06%) which represents an error of ± 0.0046 on N_v



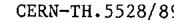
Improving on N_{ν} by more than a factor 2 would require a large effort to improve on the Bhabha cross-section calculation!



Another solution:

determine the number of neutrinos from the radiative returns

e+e- $\rightarrow \gamma Z (\rightarrow v \bar{v})$



NEUTRINO COUNTING

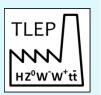
```
G. Barbiellini<sup>1</sup>, X. Berdugo<sup>2</sup>, G. Bonvicini<sup>3</sup>, P. Colas<sup>4</sup>, L. Mirabito<sup>4</sup>,
C. Dionisi<sup>5</sup>, D. Karlen<sup>6</sup>, F. Linde<sup>7</sup>, C. Luci<sup>8</sup>, C. Mana<sup>8</sup>, C. Matteuzzi<sup>9</sup>,
O. Nicrosini<sup>10</sup>, R. Ragazzon<sup>1</sup>, D. Schaile<sup>11</sup>, F. Scuri<sup>1</sup> and L. Trentadue*),<sup>12</sup>
```

in its original form (Karlen) the method only counts the 'single photon' events and is actually less sensitive than claimed. It has poorer statistics and requires running ~10 GeV above the Z pole. Systematics on photon selection are not small.

present result: $N_v = 2.92 \pm 0.05$

Alain Blondel TLEP Workshop #6 2013-10-16

Neutrino counting at TLEP



given the very high luminosity, the following measurement can be performed

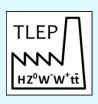
$$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \to ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$

The common γ tag allows cancellation of systematics due to photon selection, luminosity etc. The others are extremely well known due to the availanbility of O(10¹²) Z decays.

The full sensitivity to the number of neutrinos is restored , and the theory uncertainty on $\frac{\Gamma_{v}}{\Gamma e}$ (*SM*) is very very small.

A good measurement can be made from the data accumulated at the WW threshold where σ (γ Z(inv)) ~4 pb for $|\cos\theta_{\gamma}| < 0.95$

A better point may be 105 GeV (20pb and higher luminosity) may allow ΔN_{ν} =0.0004? Alain Blondel TLEP Workshop #6 2013-10-16



Conclusions

Given the high statistics (and if the detectors are designed appropriately) the measurement of the Z invisible width at TLEP should allow a powerful search for sterile neutrinos (or other invisible or exotic final states in Z decays)

The most powerful technique is the radiative returns $e+e- \rightarrow \gamma Z$ with a tag on the photon.

A sensitivity of $\Delta N_v = 0.001$ should be achievable and perhaps better

To do:

- -- confirm numbers and check selection backgrounds etc..
- -- optimize the experiment ('guess' is optimum around 105 GeV)

-- this is exciting.

