

Scaling & Assumptions for MDI, Collimation & Shielding

Manuela Boscolo (INFN-LNF) and Helmut Burkhardt (CERN)

Sixth TLEP Workshop CERN 16-18 October 2013

Outline

- Starting beam key parameters
- IR Design *i.e.* crossing angle?
- Detector constraints
- Background sources
- Tools to handle these effects
- Conclusions: plans of the work

Parameter Table

[from B. Holzer, Oct.4]

IPAC'13 Shanghai

	TLEP Z	TLEP W	TLEP H	PH TLEP t TLEP tH & ZHH			Table 1: TLEP parameters at different energies				
E _{beam} [GeV]	45	80	120	175		250		TLEP	TLEP	TLEP	TLEP
circumf. [km]	100	100	100	100		100		Ζ	W	Н	t
beam current [mA]	1440	154	29.8	6.7		1.6	E. [GeV]	45	80	120	175
#bunches/beam	7500	3200	167	160	20	10	airean f [lan]	90	80	20	20
#e-/bunch [10 ¹¹]	4.0	1.0	3.7	0.88	7.0	3.3	circuini. [kin]	80	80	80	80
# arc cells in units of	6	2	2	1	2	1	beam current [mA]	1180	124	24.3	5.4
base cell							#bunches/beam	4400	600	80	12
horiz. emit. [nm]	29.2	3.3	7.5	2.0	16.0	4.0	<u>#e-/beam [10¹²]</u>	1960	200	40.8	9.0
vert. emit. [nm]	0.06	0.017	0.015	0.002	0.016	0.004	horiz, emit, [nm]	30.8	9.4	9.4	10
bending rad. [km]	11.0	11.0	11.0	11.0		11.0	vert emit [nm]	0.07	0.02	0.02	0.01
κ_{e}	500	200	500	1000	0.4	1000	handing red [Im]	0.07	0.02	0.02	0.01
mom. c. $\alpha_c [10^{+}]$	5.0	0.4	0.4	0.1	0.4	0.1	bending rad. [Kin]	9.0	9.0	9.0	9.0
$P_{\text{loss,SR}}$ /beam [MW]	50	30	50	30		30	κε	440	470	470	1000
β_x^* [mm]	1.0	0.2	1.0	1.0		1.0	mom. c. $\alpha_c [10^{-5}]$	9.0	2.0	1.0	1.0
σ^* [µm]	121	26	61	45	126	63	Ploss SR/beam [MW]	50	50	50	50
$\sigma_{v}^{*}[\mu m]$	0.25	0.13	0.12	0.045	0.126	0.063	$\beta_{r}^{*}[m]$	0.5	0.5	0.5	1
$\delta^{\mathrm{SR}}_{\mathrm{rms}}$ [%]	0.05	0.09	0.14	0.20		0.29	β_{v} [cm]	0.1	0.1	0.1	0.1
$\sigma^{SR}_{z,rms}[mm]$	1.16	0.91	0.98	0.68	1.35	1.56	σ^*	124	78	68	100
$\delta^{\rm tot}_{\rm rms}$ [%]	0.13	0.20	0.30	0.23	0.29	0.34	σ^* [µm]	0.27	0.14	0.14	0.10
$\sigma^{tot}_{z,rms}$ [mm]	2.93	1.98	2.11	0.77	1.95	1.81	b annala an E	0.27	0.75	0.75	0.10
hourglass F_{hg}	0.61	0.71	0.69	0.90	0.71	0.73	1000000000000000000000000000000000000	0.71	0.75	0.75	0.05
$E^{\rm SK}_{\rm loss}$ /turn [GeV]	0.03	0.3	1.7	7.5		31.4	$E^{\rm org}_{\rm loss}/{\rm turn} [{\rm GeV}]$	0.04	0.4	2.0	9.2
$V_{\rm RF}$, tot [GV]	2	2	6	12		35	$V_{\rm RF}$, tot [GV]	2	2	6	12
$\tau_{ }$ (turns)	1319	242	72	23		8	Smax RF [%]	4.0	5.5	9.4	4.9
$\delta_{\max, RF}$ [%]	5.3	10.6	13.4	19.0	9.5	5.9	č,/IP	0.07	0.10	0.10	0.10
ζ_x/IP	0.068	0.086	0.094	0.057		0.075	۶ <u>×</u> ۶ /IP	0.07	0.10	0.10	0.10
ζ_{y}/IP	0.068	0.10	0.094	0.057	0.20	0.075	£ [1-11-1	1.20	0.10	0.10	0.10
$\int_{S} [KHZ]$	0.77	0.19	0.27	0.14	0.29	0.200	J _s [KHZ]	1.29	0.45	0.44	0.45
$\frac{L_{\rm acc} [W V/III]}{{\rm eff} PE length [m]}$	5	5	600	20		20	$E_{\rm acc} [\rm MV/m]$	3	3	10	20
f_{r-1} [MHz]	800	800	800	800		800	eff. RF length [m]	600	600	600	600
$\int \frac{1}{L} \frac{1}{IP[10^{32} \text{ cm}^{-2} \text{ s}^{-1}]}$	5860	1640	508	132	104	48	<i>f</i> _{RF} [MHz]	700	700	700	700
number of IPs	4	4	4	4	101	4	δ^{SR}_{ms} [%]	0.06	0.10	0.15	0.22
beam lifetime [min]	99	38	24	21	26	13	σ^{SR}_{zms} [cm]	0.19	0.22	0.17	0.25
(rad. Bhabha)	25	<i>(</i>					\mathcal{L} /IP[10 ³² cm ⁻² s ⁻¹]	5600	1600	480	130
beam lifetime [min]	$>10^{25}$	>10 ⁶	38	14	2.1	0.3	number of IPs	4	4	4	4
(beamstraniung					[11.0 with	[2.8 with]	beam lifet [min]	67	25	16	20
1 emov with $\eta = 2\%$)					m=2.50/1	η=3%]	2013	0/	43	10	20
					1[-2.370]						

Boundary Conditions

Ideal case:

- high luminosity
- Full (4 π) detector acceptance
- Low background conditions

• Real life:

Achievable Luminosity

high enough as required by physics program

Good detector acceptance

in forward/rear direction

Tolerable background rates

clarify extra-contraints: injection, proton ring, 1 or 2 rings, crossing angle

L and acceptance requirements depend very much on physics program

Detector Constraints

- Physics acceptance from the nominal beam axis
- Smallest possible beam pipe radius
- Thinnest possible beam pipe wall
- Solenoidal detector
- Separation scheme
- L* (IP to first quad) key parameter: 4m

Remedies:

- Low SR backgrounds
 Low Beam-gas backgrounds
 first bends far from IP, to minimize quads rate: orbit at center of quads good pumping
- Low radiative Bhabha backgrounds proper shielding

- No beam disruption from Beamstrahlung for a circular collider (σ_v ~ 300 nm vs. 5 nm @ ILC)
 - No EM backgrounds in the detector (photons, e+e- pairs);
 - No beam energy smearing energy spectrum perfectly known (lumi measurement)
 - Negligible pile-up from γγ interactions

No drastic requirements for the detector and the background simulation

Patrick Janot

Higgs Factory Mini Workshop Frascati, 14 Feb 2013

much better environment wrt linear collider but beam is recirculated relevant effects for lifetime

TLEP6 Workshop, CERN, 16-18 Oct. 2013

12

120

125

Background Considerations

- background processes
- approximations used
- implementation needed

The tools:

- for the beams: Geant4/FLUKA for SR, BDSIM, GUINEA-PIG, BBBrem, HTGEN, MCGAS, PLACET,...
- for the detector: Geant4/FLUKA, BDSIM,...

There should be collaboration/synergy between interaction region and detector design

Background Sources- / Rates to be evaluated

• Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- Pair production $e^+e^- \rightarrow e^+e^- e^+e^-$
- Muon production $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- beam-beam (Halo)

• Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung

Other sources

- thermal outgassing due to HOM losses
- injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- intrabeam scattering

TLEP6 Workshop, CERN, 16-18 Oct. 2013

Beamstrahlung

- Dominant effect on lifetime
- Dedicated studies already performed
 - theoretical [Yokoya, Telnov, ...]
 - numerical with GUINEA-PIG [D. Schulte]
- Effect on luminosity studied by Ohmi

• More investigation as a background source

Beamstrahlung

Beamstrahlung dependencies:

$$\mathbf{Y} \propto \frac{N\gamma}{\sigma_z(\sigma_x + \sigma_y)}$$

- Flat beams, vertical size affects only luminosity
- For a given bunch length, horizontal size and particles per bunch drive the BS effects
- Same dependencies for the BS photon energy
- Circular collider parameters designed to lead to smaller BS

M. Zanetti

beamstrahlung lifetime

- simulation w 360M macroparticles
- τ varies exponentially w energy acceptance η
- post-collision *E* tail \rightarrow lifetime τ

beam lifetime versus acceptance δ_{max} for 4 IPs:

 $\frac{N\gamma}{\sigma_z(\sigma_x+\sigma_y)}$

 $Y \propto -$

Radiative Bhabhas

- Bremsstrahlung process in the forward direction in BhaBha scattering: e⁺e⁻ -> e⁺e⁻ γ
- Simulation with the BBBrem generator (R. Kleiss and H. Burkhardt) and fully propagate in the Geant-4 description
- The outgoing particles are not the direct responsible for detector backgrounds but they generate potentially dangerous showers and backscattered particles in the downstream beamline elements
- Beamline and shielding design is very important

Low angle Bhabhas also very important at such high luminosity (showers in various materials)

Pair production (e⁺e⁻)

- e⁺e⁻ -> e⁺e⁻ e⁺e⁻
- can be studied with GUINEA-PIG generator (D. Schulte)
- can be high production rate but particles have low energy and loop in the solenoid field
- relevant for which sub-system?
 - typically low energy curling e⁺e⁻ relevant for vertex detector and first layers of tracking devices
- first guess at generator level (with magnetic fields)
- full simulation with Geant4 needed for detailed study

Same statements are valid for $\mu^+\mu^-$ production to be checked at these energies

Beam-gas

- Mainly Coulomb/Bremsstrahlung interactions with residual gas molecules in the beampipe
- As a start: the estimate based on LEP2 rates and rescale for beam currents.
- For a more quantitative and accurate estimate, the lattice description is needed.
- TOOL:
 - PLACET, HTGEN (Helmut)
 - MCGAS Monte Carlo developed for SuperB (Manuela)

Synchrotron Radiation

- SR Power (dipoles, quads, ..)
- calculate the rate of photons through the detector beam pipe
- add in calculation the compensating solenoids and detector field
- calculation of backscattered photons
- scattering rate and incidence on detector beam pipe
- forward scattered photon rate from upstream bend magnets

Geant4 bend example

SR scaling

- Power
- Critical energy
- spectrum

The Interaction Region has to be designed to reduce the bending of incoming beam trajectories and offset in quadrupoles – work together with the IR design group.

LEP IR

TLEP6 Workshop, CERN, 16-18 Oct. 2013

Synchrotron radiation, dipoles and quadrupoles

watch out for quads SR radiation: keep beam offset in quads small

at present, assuming no crossing angle, TLEP quads SR is smaller than in LEP -thanks to 12 RF stations and smaller emittance

LEP 100 GeV energy loss by syn. rad. U0 = 2.92 GeV/turn E γ mean = 0.222 MeV, 7.76 γ in 11.55 m long bend Increased by 0.2% from quads by sawtooth and by 0.5% from beam size of which 22% from insertion quads

TLEP 175 GeV

12 straight sections, all with RF Sawtooth +/- 0.4 mm -->small

Prelim **TLEP** 175 GeV, U0 = 8.6 GeV E γ mean = 0.388 MeV, 8.13 γ per 21.3 m long bend ~ 0.2% from quads by sawtooth increase by beam size small due to small emittance

Typical Fields

	LEP	TLEP
Energy	100 GeV	175 GeV
Bending fields	0.1 T	0.06 T
Mean γ energy	0.2 MeV	0.4 MeV

circular HFs: synchrotonradiation heat load

	PEPII	SPEAR3	LEP3	TLEP-Z	TLEP-H	TLEP-t
E (GeV)	9	3	120	45.5	120	175
I (A)	3	0.5	0.0072	1.18	0.0243	0.0054
rho (m)	165	7.86	2625	9000	9000	9000
Linear Power (W/cm)	101.8	92.3	30.5	8.8	8.8	8.8

TLEP has >10 times less SR heat load per meter than PEP-II or SPEAR! (though higher photon energy)

N. Kurita, U. Wienands, SLAC

TLEP6 Workshop, CERN, 16-18 Oct. 2013

synchrotron radiation - activation

NEUTRON PRODUCTION BY LEP SYNCHROTRON RADIATION USING EGS

High Order Modes

Last step, temporally:

- Need an engineering design:
- need location of joints and bellows
- beam pipe cross sections
- mask locations
- detector beam pipe

Simulation results may bring to re-design some part, procedure will be iterated

SuperKEKB / TLEP

parameters	unit	TLEP t	TLEP Z	SUPERKEKB LER HER	
L/IP	10 ³⁴ cm ⁻² s ⁻¹	1.3	56	80	
E _{beam}	GeV	175	45	4	7
β_{x}^{*}	m	1	0.5	0.032	0.025
β _γ *	cm	0.1	0.1	2.7	3.0
ε _x	nm	10	30.8	3.2	4.6
ε _γ	pm	10	0.07	8.6	12.9
l _{beam}	А	0.0054	1.18	3.6	2.6
$\kappa = \epsilon_y / \epsilon_x$	%	0.1	4.4	0.27	0.28
I _{bunch}	mA	0.45	0.27	1.44	1.04
N _{part} /beam	1012	9	1960		
N _{part} /bunch	1011	7.5	4.45		
n bunches	#	12	4400	250	00
σ_x^*	μm	100	124	10	11
σ _γ *	μm	0.1	0.27	0.048	0.062
beam lifetime	min TLE	P6 Work 20 p, CERN,	16-18 67 . 2013	5	

Starting parameters (IPAC13)

- E_{beam}= 175 GeV (max energy)
- β_x *= 1m
- $\beta_y^* = 1 \text{ mm}$
- ε_x = 10 nm
- $\varepsilon_y = 10 \text{ pm}$ $\varepsilon_y / \varepsilon_x = 0.1\%$

β_y*=300 μm ε_y/ε_x=0.25%

SuperKEKB

lifetime 5 min (TLEP: ~15 min)

- I_{beam} = 5.4 mA
- N_{part} = 9 10¹²/beam 7.5 10¹¹ /bunch (12 bunches)
- $\sigma_x^* = 100 \,\mu m$
- $\sigma_{y}^{*} = 0.1 \,\mu m$

But, SuperKEKB is so lower in energy that lifetime/backgrounds dominated by different processes- similarity in the energy acceptance

Conclusions

• Plans:

- need detailed IR design
 - (L*, crossing angle, #beam pipes,..)
- detailed study of backgrounds

• Organization:

- Background optimization integrated in IR design
- Backgrounds should not be intended to determine simply if a certain detector is feasible, but should be used to optimize the machine and the detector design