RARE DECAYS AT TLEP

Luca Silvestrini INFN, Rome

- Introduction & general considerations
- Rare decays & FCNC Z couplings
 - Leptonic flavour
 - Hadronic flavour
- Conclusions and Outlook

INTRODUCTION

- LEP history tells us that TLEP has a very good chance to contribute strongly to the experimental progress in rare decays
- This talk is by no means a review or a systematic study of rare decays @TLEP; my aim is to pose a few questions and trigger some discussion...

GENERAL CONSIDERATIONS

- TLEP will produce:
 - ~3 $10^{10} \tau$, vs 3 10^{10} @ τ -c and 7 10^{10} @ Belle II

- ~ 2 10¹¹ b & c quarks, vs 2 10¹⁰ c @ τ-c and 10¹¹ c and 8 10¹⁰ B @ Belle II

- so it could compete with Belle II or τ -c in B, c and τ decays: detailed studies needed
- TLEP could do better than LHCb on a few B_s decays: A_{SL}^{s} , $B_s \rightarrow \gamma\gamma$, ... $B_s \rightarrow \gamma\gamma$, ...

RARE DECAYS & Z FCNC: LFV

- LEP limits on Z→l_il_j: (based on 4 10⁶ Z decays)
- BR(Z→µe)<1.7 10⁻⁶
- BR(Z→τe)<9.8 10⁻⁶
- BR(Z→τμ)<1.2 10⁻⁵
- How much can we improve these bounds with 10^{12} Z's?
- How do these bounds compare with indirect ones from LFV μ and τ decays?

LFV II

- Write FC Z Lagrangian as
 - $L_{FC} = g_Z I_i \gamma^{\mu} (U_{ij}^L P_L + U_{ij}^R P_R) I_j Z_{\mu} + h.c.$
- $BR(Z \rightarrow |_{i}^{+}|_{j}^{-}) \sim 8 (|U^{L}_{ij}|^{2} + |U^{R}_{ij}|^{2}) \Gamma_{i}/\Gamma \sim$

 $0.3 (|U_{ij}^{L}|^{2} + |U_{ij}^{R}|^{2})$

- BR($|_{i}^{-} \rightarrow |_{j}^{-} |_{k}^{+} |_{k}^{-}$) ~ 0.3 (2+ δ_{jk}) ($|U^{L}_{ij}|^{2} + |U^{R}_{ij}|^{2}$) * BR($|_{i}^{-} \rightarrow |_{j}^{-} v_{i} v_{j}$)
- $BR(Z \rightarrow l_i^+ l_j^-) < BR(l_i^- \rightarrow l_j^- l_k^+ l_k^-) / BR(l_i^- \rightarrow l_j^- v_i^- v_j^-) / (2 + \delta_{jk})$

6th TLEP Workshop, 16/10/13

L. Silvestrini

5

LFV III

- Current and future $BR(\mu \rightarrow eee) < 10^{-12}$ bounds on LFV μ and \bullet **BR(\tau \rightarrow \mu \mu \mu)<2 10⁻⁸ (10⁻⁹)** τ decays: • BR($\tau \rightarrow eee$)<3 10⁻⁸ (10⁻⁹)
- These bounds imply: • BR(Z $\rightarrow \mu e$)<3 10⁻¹³
 - BR(Z→τμ)<4 10⁻⁸ (2 10⁻⁹)
 - BR($Z \rightarrow \tau e$)<6 10⁻⁸ (2 10⁻⁹)
- Measuring BR($Z \rightarrow \tau e$) & BR($Z \rightarrow \tau \mu$) better than 10⁻⁹ would overcome future bounds on LFV decays

L. Silvestrini

RARE DECAYS & Z FCNC: DOWN-TYPE QUARKS

• From $K_L \rightarrow \mu\mu$ one gets $|U_{ds}| < \sim 10^{-5}$

 \Rightarrow BR(Z \rightarrow ds) <~ 10⁻¹¹

Buras & L.S.

- From present expts in B physics one gets $|U_{bs}| \sim 4 \ 10^{-4} \text{ and } |U_{bd}| \sim 10^{-4}$ Buras et al.
 - \Rightarrow BR(Z \rightarrow bd) <~ 10⁻⁹, BR(Z \rightarrow bs) <~ 2 10⁻⁸
- How far can TLEP go? How will b id perform? Need detailed studies

6th TLEP Workshop, 16/10/13

L. Silvestrini

RARE DECAYS & Z FCNC: UP-TYPE QUARKS

- From D mixing one gets $|U_{uc}| < \sim 2 \ 10^{-3}$ $\Rightarrow BR(Z \rightarrow cu) < \sim 5 \ 10^{-7}$
- How far can TLEP go? How will c id perform? Need detailed studies

RARE DECAYS & Z FCNC BEYOND THE Z POLE

- At energies larger than the Z pole, other FCNC Z form factors ($q^2 \gamma_{\mu}, \sigma_{\mu\nu}q^{\nu}$) become important in ($e^+e^- \rightarrow f_i f_j$), while FCNC decays are mainly sensitive to the γ_{μ} form factor:
- The impact of running @ higher energies should be studied in detail

	Top decay	Single top		Top decay	Single top
$t \to u Z(\gamma_{\mu})$	$3.6 imes 10^{-5}$	8.0×10^{-5}	$t \to c Z(\gamma_{\mu})$	3.6×10^{-5}	3.9×10^{-4}
$t \to u Z(\sigma_{\mu\nu})$	$3.6 imes 10^{-5}$	$2.3 imes 10^{-5}$	$t \to c Z(\sigma_{\mu\nu})$	$3.6 imes 10^{-5}$	1.4×10^{-4}
$t \rightarrow u \gamma$	$1.2 imes 10^{-5}$	$3.1 imes 10^{-6}$	$t \to c \gamma$	$1.2 imes 10^{-5}$	2.8×10^{-5}
$t \rightarrow ug$	_	2.5×10^{-6}	$t \to cg$	_	$1.6 imes 10^{-5}$
$t \to uH$	$5.8 imes 10^{-5}$	$5.1 imes 10^{-4}$	$t \to cH$	$5.8 imes 10^{-5}$	2.6×10^{-3}

Table 4: 3σ discovery limits for top FCN interactions at LHC, for an integrated luminosity of 100 fb⁻¹. The limits are expressed in terms of top decay branching ratios.

Aguilar-Saavedra, hep-ph/0409342

	$500 {\rm GeV}$	$800 {\rm GeV}$	
$t \to q Z(\gamma_{\mu})$	$1.9 imes 10^{-4}$	1.9×10^{-4}	
$t \to q Z(\sigma_{\mu\nu})$	$1.8 imes 10^{-5}$	$7.2 imes 10^{-6}$	
$t \to q \gamma$	$1.0 imes 10^{-5}$	$3.8 imes 10^{-6}$	

Table 6: 3σ discovery limits for top FCN interactions in single top production at TESLA, for CM energies of 500 and 800 GeV, with respective luminosities of 345 fb⁻¹ and 534 fb⁻¹. The limits are expressed in terms of top decay branching ratios.

CONCLUSIONS & OUTLOOK

- The physics potential of TLEP on rare decays seems very promising
- Detailed studies needed on a broad range of topics:
 - rare τ , D, B and B $_{\!s}$ decays: sensitivities and comparison with LHCb, Belle-II, $\tau\text{-}c$
 - FC leptonic Z decays: sensitivities
 - FC hadronic Z decays: b and c id,

6th TLEP Workshop, 16/10/13

L. Silvestrini

CONCLUSIONS & OUTLOOK II

- Studies also needed for top FCNC interactions:
 - sensitivities to t \to cZ, t \to cγ, t \to uZ, t \to uγ and comparison with LHC
 - sensitivities to single top production through FCNC Z and γ plus NP boxes
- Plenty of interesting topics to be studied and discussed!