Tau Physics @ TeraZ

A. Pich IFIC, Valencia

Sixth TLEP Workshop, CERN, 16-18 October 2013

High-Energy $\tau^+\tau^-$ **Pairs**

- Boosted $\tau^+\tau^-$ pairs
- Clean signature
- Manageable backgrounds

Many τ results are still dominated by LEP data

Statistics much higher at the B-Factories (backgrounds also)

Let's assume a high-statistics (10¹⁰) $\tau^+\tau^-$ data sample at high energies

τ Lifetime

- Not a single lifetime measurement published by Babar/Belle
- Preliminary Babar value @ TAU 2004: $\tau_{\tau}=289.40\pm0.91\pm0.90$ (unpublished)
- Preliminary Belle value @ TAU 2012: $\tau_{\tau}=290.18\pm0.54\pm0.33$ (unpublished)

Charged-current
universality
$$B_{\tau \to e} = \frac{B_{\tau \to \mu}}{0.972559 \pm 0.000005} = \frac{\tau_{\tau}}{(1632.9 \pm 0.6) \times 10^{-15} \text{ s}}$$

$$\left(B_{\tau \to \mu}/B_{\tau \to e}\right)_{\rm exp} = 0.9761 \pm 0.0028$$

Non-BF: BaBar '10:

 0.9725 ± 0.0039

 0.9796 ± 0.0039

0.4% precision

Charged Current Universality

Precise measurement of $Br(W \rightarrow \tau) / Br(W \rightarrow \mu, e)$ needed

HADRONIC TAU DECAY

Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{Hadrons})}{\Gamma(\tau^{-} \to v_{\tau} \ e^{-} \ \overline{v_{e}})} \approx N_{C} \qquad ; \qquad R_{\tau} = \frac{1 - B_{e} - B_{\mu}}{B_{e}} = 3.636 \pm 0.011$$
$$R_{\tau} = \frac{1}{R_{\tau}} - 1.97256 = 3.6331 \pm 0.0088 \qquad ; \qquad R_{\tau} = \frac{\text{Br}(\tau^{-} \to v_{\tau} + \text{Hadrons})}{R_{\tau}} = 3.6280 \pm 0.0094$$

 $B_e^{
m univ}$

 B_e^{univ}

$$\sigma \sim \operatorname{Im} \left\{ \underbrace{\stackrel{e^-}{\underset{e^+}{\longrightarrow}}}_{q^+} \underbrace{\stackrel{q^+}{\underset{q^-}{\longrightarrow}}}_{q^+} \underbrace{\frac{\sigma(e^+e^- \to had)}{\sigma(e^+e^- \to \mu^+\mu^-)}}_{q^+} = 12 \pi \operatorname{Im} \Pi_{em}(s) \right\}$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$

$$\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{array}{c} \overline{\nu_{\tau}} & \overline{\nu_{\tau}} \\ \overline{\nu_{\tau}} & \overline{\nu_{\tau}} \end{array} \right\}$$

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{had})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu_{e}})} = 12\pi \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s) + \text{Im} \Pi^{(0)}(s) \right]$$

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x) J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \ \Pi_{ij,J}^{(0)}(q^2)$

SPECTRAL FUNCTIONS

Better data needed

QCD Prediction of Braaten-Narison-Pich'92 $R_{\tau} \equiv \frac{\Gamma(\tau \to v_{\tau} + \text{had})}{\Gamma(\tau \to v_{\tau} e^{-} \overline{v_{\tau}})} = 12\pi \int_{0}^{1} dx \, (1 - x)^{2} \Big[(1 + 2x) \, \text{Im} \, \Pi^{(1)}(x m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x m_{\tau}^{2}) \Big]$!Im(s) $R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[(1+2x) \Pi^{(0+1)}(x m_{\tau}^2) - 2x \Pi^{(0)}(x m_{\tau}^2) \right]$ m_{τ}^2 Re(s) $\Pi^{(J)}(s) = \sum_{D=2\pi} \frac{C_D^{(J)}(s,\mu) \langle O_D(\mu) \rangle}{(-s)^{D/2}}$ OPE $R_{\tau} = N_{C} S_{EW} \left(1 + \delta_{P} + \delta_{NP} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$ $\delta_{\text{NP}} = -0.0059 \pm 0.0014$ $S_{\rm FW} = 1.0201$ (3) • Marciano-Sirlin, Braaten-Li, Erler Fitted from data (Davier et al) $\delta_{\rm p} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$ • Baikov-Chetyrkin-Kühn

Perturbative (m_q=0)

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n \left(\frac{\alpha_s(-s)}{\pi}\right)^n$$

$$K_0 = K_1 = 1 , K_2 = 1.63982 , K_3 = 6.37101 , K_4 = 49.07570$$
Baikov-Chetyrkin-Kühn '08

$$\Longrightarrow \delta_P = \sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s) = a_\tau + 5.20 a_\tau^2 + 26 a_\tau^3 + 127 a_\tau^4 + \cdots$$
Le Diberder- Pich '92 CIPT FOPT

$$A^{(n)}(\alpha_s) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-2x+2x^3-x^4) \left(\frac{\alpha_s(-s)}{\pi}\right)^n = a_\tau^n + \cdots ; a_\tau \equiv \alpha_s(m_\tau)/\pi$$
Power Corrections
Braaten-Narison-Pich '92
$$\Pi^{(0+1)}_{OPE}(s) \approx \frac{1}{4\pi^2} \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-s)^n}$$

$$C_i \langle O_i \rangle \approx \frac{2\pi}{3} \langle 0 | \alpha_s G^{ss} G_{ss} | 0 \rangle$$

$$\delta_{NP} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx (1-3x^2+2x^3) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_\tau^2)^n} = -3 \frac{C_6 \langle O_6 \rangle}{m_\tau^6} - 2 \frac{C_8 \langle O_8 \rangle}{m_\tau^8}$$
Suppressed by m_τ^6 [additional chiral suppression in $C_6 \langle O_6 \rangle^{V+A}$]

Spectral Function Distribution

Moments:

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Sensitivity to power corrections (k,l)

The non-perturbative contribution to R_{τ} can be obtained from the invariant-mass distribution of the final hadrons

$$\delta_{\rm NP} = -0.0059 \pm 0.0014$$
 Davier et al. (ALEPH data)

Duality Violations: (non-pinched moments)

 $\oint_{x=1} dx \ \Pi(x m_{\tau}^2)$

Im $\Pi(s) \sim \exp(-\delta - \gamma s) \sin(\alpha + \beta s)$

 $\delta_{\rm NP} = -0.003 \pm 0.012$

Boito et al. (OPAL data)

Recent $\alpha_s(m_{\tau})$ Analyses

Reference	Method	δ _{NP}	δ _P	α _s (m _τ)	α _s (m _Z)
Baikov et al	CIPT, FOPT		0.1998 (43)	0.332 (16)	0.1202 (19)
Davier et al	CIPT	- 0.0059 (14)	0.2066 (70)	0.344 (09)	0.1212 (11)
Beneke-Jamin	BSR + FOPT	– 0.007 (3)	0.2042 (50)	0.316 (06)	0.1180 (08)
Maltman-Yavin	PWM + CIPT	+ 0.012 (18)	_	0.321 (13)	0.1187 (16)
Menke	CIPT, FOPT		0.2042 (50)	0.342 (11)	0.1213 (12)
Narison	CIPT, FOPT		_	0.324 (08)	0.1192 (10)
Caprini-Fischer	BSR + CIPT		0.2037 (54)	0.322 (16)	-
Abbas et al	IFOPT		0.2037 (54)	0.338 (10)	
Cvetič et al	β_{exp} + CIPT		0.2040 (40)	0.341 (08)	0.1211 (10)
Boito et al	CIPT, DV	- 0.002 (12)		0.347 (25)	0.1216 (27)
2012	FOPT, DV	- 0.004 (12)	_	0.325 (18)	0.1191 (22)
Pich	CIPT	- 0.0059 (14)	0.1995 (33)	0.339 (13)	0.1210 (15)
	FOPT			0.318 (14)	0.1185 (18)
My Average	CIPT, FOPT		0.1995 (33)	0.329 (13)	0.1198 (15)

CIPT:	Contour-improved perturbation theory	β _{exp} :	Expansion in derivatives of α_s (β function)
FOPT:	Fixed-order perturbation theory	PWM:	Pinched-weight moments
BSR:	Borel summation of renormalon series	CIPTm:	Modified CIPT (conformal mapping)
IFOPT	Improved FOPT	DV:	Duality violation (OPAL only)

Present Status

$$\alpha_s(m_\tau^2) = 0.329 \pm 0.013$$

 $a_s(M_Z^2) = 0.1198 \pm 0.0015$
 $\alpha_s(M_Z^2)_{Z \text{ width}} = 0.1197 \pm 0.0028$

The most precise test of Asymptotic Freedom

$$\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0001 \pm 0.0015_{\tau} \pm 0.0028_Z$$

V_{us} **Determination**

 $R_{\tau,S}^{00} = 0.1612 \ (28)$ $R_{\tau,V+A}^{00} = 3.4671 \ (84)$ $|V_{us}| = 0.2173 \pm 0.0020_{exp} \pm 0.0010_{th}$ $|V_{ud}| = 0.97425 \ (22)$

K₁₃: $|V_{us}| = 0.2238 \pm 0.0011$ $[f_+(0) = 0.967 \pm 0.004]$

The τ could give the most precise V_{us} determination

V_{us} from τ

Slight underestimate of τ branching ratios ? **Use modes** measured in K decays Larger R_s $R_s = 0.1663 (34)$

> Larger V_{us} $|V_{us}| = 0.2207 (25)$

Better data needed!

Remaining Problems

PDG 2012:

"Eighteen of the 20 *B-factory* branching fraction measurements are smaller than the non-*B-factory values. The average normalized difference between* the two sets of measurements is -1.30 (-1.41 for the 11 Belle measurements and -1.24 for the 9 BaBar measurements)"

Missing modes ?

Modes measured by the two BF experiments

Mode	BaBar – Belle Normalized Difference $(\#\sigma)$		
$\pi^- \pi^+ \pi^- \nu_\tau \text{ (ex. } K^0)$	+1.4		
$K^-\pi^+\pi^-\nu_\tau~({\rm ex.}~K^0)$	-2.9		
$K^-K^+\pi^-\nu_{ au}$	-2.9		
$K^- K^+ K^- \nu_{\tau}$	-5.4		
$\eta \ K^- \nu_{ au}$	-1.0		
$\phi K^- \nu_{\tau}$	-1.3		

Standard deviation difference

PHYSICS OUTLOOK

Many more interesting topics

- ☐ Tests of QCD and the Electroweak Theory
- □ Looking for Signals of New Phenomena
- Superb Tool for New Physics Searches

High-statistics τ data samples at high energies would provide many useful informations

Systematic errors & backgrounds need to be studied

Backup Slides

Perturbative Uncertainty on $\alpha_s(m_{\tau})$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a(-s)^n$$

$$\delta_{P} = \sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s) = \sum_{n=0}^{\infty} r_n a_{\tau}^n$$

$$r_n = K_n + g_n$$

$$CIPT FOPT$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-xm_{\tau}^2)^n = a_{\tau}^n + \cdots ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

n	1	2	3	4	5
K _n	1	1.6398	6.3710	49.0757	
g _n	0	3.5625	19.9949	78.0029	307.78
r _n	1	5.2023	26.3659	127.079	

The dominant corrections come from the contour integration

Le Diberder- Pich 1992

Large running of a_s along the circle $s = m_{\tau}^2 e^{i\phi}$, $\phi \in [0, 2\pi]$

$$A^{(n)}(a_{\tau}) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-x m_{\tau}^2)^n = a_{\tau}^n + \cdots ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

$$A^{(1)}(a_{\tau}) = a_{\tau} - \frac{19}{24} \beta_1 a_{\tau}^2 + \left[\beta_1^2 \left(\frac{265}{288} - \frac{\pi^2}{12}\right) - \frac{19}{24} \beta_2\right] a_{\tau}^3 + \cdots$$

$$a(-s) \simeq \frac{a_{\tau}}{1 - \frac{\beta_1}{2} a_{\tau} \log\left(-s/m_{\tau}^2\right)} = \frac{a_{\tau}}{1 - i\frac{\beta_1}{2} a_{\tau}\phi} = a_{\tau} \sum_n \left(i\frac{\beta_1}{2}a_{\tau}\phi\right)^n \qquad ; \qquad \phi \in [0, 2\pi]$$
FOPT expansion only convergent if $\alpha_{\tau} < 0.14$ (0.11) [at 1 (3) loops]
Experimentally $\alpha_{\tau} \approx 0.11$ FOPT should not be used (divergent series)
FOPT suffers a large renormalization-scale dependence (Le Diberder-Pich, Menke)
The difference between FOPT and CIPT grows at higher orders

Renormalons

$$D(s) \equiv -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a(-s)^n$$
 Asymptotic series

Borel Summation:

However, B(t) has pole singularities at

•
$$u \equiv -\beta_1 t/2 = +n$$
 $(n \ge 2)$ Infrared Renormalons

•
$$u \equiv -\beta_1 t/2 = -n$$
 $(n \ge 1)$

Ultraviolet Renormalons

IR - n Renormalon Ambiguity:
$$\delta D(s) \sim \left(\frac{\Lambda^2}{-s}\right)^n$$

(Descotes-Genon – Malaescu)