

A First Look at the

TLEP Accelerator

Frank Zimmermann, CERN-BE on behalf of the TEP Scar TH Seminar, 16 October 2013

TICE

thanks to R. Aleksan, R. Assmann, M. Benedikt, A. Blondel, Y. Cai, O. Dominguez, J. Ellis, B. Holzer, P. Janot, M. Koratzinos, H. Maury Cuna, S. Myers, K. Ohmi, K. Oide, J. Osborne, L. Rossi, J. Seeman, V. Telnov, R. Tomas, J. Wenninger, S. White, U. Wienands, K. Yokoya, M. Zanetti, ...

Work supported by the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

circular colliders & storage rings

LEP achievements

TLEP design targets

• c.m. energies: 240 GeV (ZH)

+ 91(Z), 160(WW), 350(tt), [+ 500 GeV (ZHH, Ht)?]

- luminosities: L: several 10³⁴ cm⁻²s⁻¹/IP at ZH,
 > 10³⁵ cm⁻²s⁻¹/IP at the Z
- polarization up to WW for ~100 keV energy calibration
- extendibility reusing tunnel + infrastructure for 100-TeV pp collider, 1st step in HEP long-term vision

key constraints: in words ...

- SR power 100 MW ↔ wall plug power → beam current
- limit on **beam-beam tune shift**:
 - extrapolated from LEP2 & KEKB & other colliders
- #bunches ↔ luminosity, e-cloud, parasitic collisions
- hor. emittance ε_x : bending radius ρ , optics (#magnets)
- emittance ratio $\varepsilon_v/\varepsilon_x$: alignment, tuning, beam-beam
- vertical β^{*}_v,: bunch length & optics
- beam lifetime:
 - radiative Bhabha scattering (unavoidable)
 - beamstrahlung (design optimization)

... and in formulae

lifetime limit: rad. Bhabha scattering

beam lifetime
$$\frac{1}{\tau_b} = \frac{L}{I_{beam}} \sigma n_{IP} e f_{rev}$$

at beam-beam limit:
$$\tau_b = \frac{2r_e m_e}{n_{IP} \sigma f_{rev}} \frac{\beta_y}{E_b \xi_y}$$

$$\frac{d\sigma}{dk} = \frac{4\alpha (r_e)^2}{k} \left[\frac{4}{3} - \frac{4}{3}k + k^2\right] \left[\frac{\log(12^2) \text{from}_k}{1 - k} - \frac{1}{2} \right]$$

$$\Rightarrow \sigma \approx \int_{k_{\min}}^1 \frac{d\sigma}{dk} dk \approx 0.32 \text{ theorists}} e^{\text{hardt}} e^{\text{hardt}} e^{\text{R. Kleiss,}}$$

LEP2: $\tau_{\text{beam, LEP2}} \sim 6 \text{ h}$ (~30% suppression: σ ~0.21 barr

TLEP with *L*~5x10³⁴ cm⁻²s⁻¹ at 4 IPs:

τ_{beam,TLEP}~21 minutes, unavoidable

lifetime limit: beamstrahlung (BS)

synchrotron radiation in the strong field of opposing beam

<u>Note</u>: Many theoretical beamstrahlung studies in 1980's. Example R. Blankenbecler, S.D. Drell , "A Quantum Treatment of Beamstrahlung," Phys.Rev. D36 (1987) 277

make some e[±] lose large part of their energy

& then be lost → limited beam lifetime

$$\tau_{BS} \approx \frac{20\sqrt{6\pi}r_e}{n_{IP}\alpha^2} \frac{C}{c} \frac{\gamma}{\eta} u^{3/2} e^{u} \quad \text{with} \quad u = \eta \frac{\alpha}{3} \frac{1}{(r_e)^2} \frac{\sigma_z}{\gamma} \frac{\sigma_z}{N_b}$$
V. Telnov, PRL 110 (2013) 114801 η : momentum acceptance
mitigations: σ_x : horizontal beam size at IP

- (1) large momentum acceptance η (2) flat beams [i.e. small ε_{y} & large β_{x}^{*}] \rightarrow minimize $\kappa_{\varepsilon} = \varepsilon_{y} / \varepsilon_{x}, \beta_{y} \sim \beta_{x} (\varepsilon_{y} / \varepsilon_{x})$ & respect $\beta_{y} \ge \sigma_{z}$
- (3) fast replenishing

from LEP2 to TLEP-H

- larger ring: higher energy or beam current
- 4-5 x more SR power: 23 MW \rightarrow 100 MW
- a few times smaller emittance at equal energy (ρ, cell length)
- β_v^* reduced by factor 50

- also requires smaller $\sigma_z \sim \beta_y^*$ (natural for larger ring)

- steady-state BS energy spread ≤0.3%

• top up injection to support short lifetime

TLEP: double ring with topping up

short beam lifetime (~τ_{LEP2}/40) due to high luminosity **supported by top-up injection** (used at KEKB, PEP-II, SLS,...); top-up **also avoids ramping & thermal transients, + eases tuning**

top-up injection: schematic cycle

almost constant current

100%

99%

top-up injection at PEP-II

average luminosity ≈ peak luminosity

similar results from KEKB

TLEP Main Parameters

- energy = 91, 160, 240, 350 & 500 GeV c.m.
- circumference ~100 km
- total SR power ≤ 100 MW
- **#IPs = 2 or 4**
- beam-beam tune shift / IP scaled from LEP **luminosity / IP ~ 5x10³⁴ cm⁻²s⁻¹ at the Higgs**
 - ~1000 x LEP2
- top-up injection
- $\beta_y^* = 1 \text{ mm} \sim \sigma_z$

parameters	TLEP Z	TLEP W	TLEP H	TLEP t	
<i>E</i> _{c.m.} [GeV]	91	160	240	350	
beam current [mA]	1440	154	29.8	6.7	
# bunches/beam	7500	3200	167	160	20
# <i>e</i> [±] /bunch [10 ¹¹]	4.0	1.0	3.7	0.88	7.0
$\varepsilon_{\rm x}, \varepsilon_{\rm y} [{\rm nm}]$	29.2, 0.06	3.3,0.017	7.5, 0.015	2, .002	
$\beta^*_{x,y}$ [mm]	500, 1	200, 1	500, 1	1000, 1	
$\sigma^*_{x,y}[\mu m]$	121, 0.25	26, 0.13	61, 0.12	45,.045	126,.13
$\sigma^{tot}_{z,rms}$ [mm] (w BS)	2.93	1.98	2.11	0.77	1.95
<i>E</i> ^{SR} _{loss} /turn [GeV]	0.03	0.3	1.7	7.5	
$V_{\rm RF}$, tot [GV]	2	2	6	12	
$\xi_{x,v}$ /IP	0.068	0.086	0.094	0.057	
\mathcal{L} /IP[10 ³⁴ cm ⁻² s ⁻¹]	59	16	5	1.3	1.0
#IPs	4	4	4	4	
τ _{beam} [min] (rad.B)	99	38	24	21	26
$\tau_{\text{beam}}[\text{min}] (BS,\eta=2\%)$	>10 ²⁵	>106	9	3.5	0.5

parameters	LEP2	TLEP W	TLEP H	TLEP t	
<i>E</i> _{c.m.} [GeV]	209	160	240	350	
beam current [mA]	4	154	29.8	6.7	
# bunches/beam	4	3200	167	160	20
# <i>e</i> [±] //bunch [10 ¹¹]	5.8	1.0	3.7	0.88	7.0
$\varepsilon_{\rm x}, \varepsilon_{\rm y} [{\rm nm}]$	48, 0.25	3.3,0.017	7.5, 0.015	2, .002	11-
$\beta^*_{x,y}$ [mm]	1500, 50	200, 1	500, 1	b eri	son
$\sigma^*_{x,y}[\mu m]$	270, 3.5	26, 0.13	61, 0.12	45,.045	126,.13
$\sigma^{tot}_{z,rms}$ [mm] (w BS)	16.1	1.98	2.11	0.7 V İ	195
<i>E</i> ^{SR} _{loss} /turn [GeV]	3.41	0.3	1.7	7.5	
$V_{\rm RF}$, tot [GV]	3.64	2	6	12	2
$\xi_{x,y}$ /IP	0.066 (y)	0.086	0.094	0.057	
\mathcal{L} /IP[10 ³⁴ cm ⁻² s ⁻¹]	0.0125	16	5	1.3	1.0
#IPs	4	4	4	4	
τ _{beam} [min] (rad.B)	363	38	24	21	26
$\tau_{\text{beam}}[\text{min}] (BS,\eta=2\%)$	>10 ³⁵	$>10^{6}$	9	3.5	0.5

parameters	TLEP W	TLEP H	TLEP t		ZHH&ttH
<i>E</i> _{c.m.} [GeV]	160	240	350		500
beam current [mA]	154	29.8	6.7	/	1.6
# bunches/beam	3200	167	160	20	10
# e^{\pm} //bunch [10 ¹¹]	1.0	3.7	0 88	7.0	3.3
$\varepsilon_{\rm x}, \varepsilon_{\rm y} \ [\rm nm]$	3.3,0.017	7.5, 0.015	2, .002		4., 0.004
$\beta^*_{x,y}$ [mm]	200, 1	ene			1000, 1
$\sigma^*_{x,y}[\mu m]$	26, 0.13	61, 0.12	45,.045	126,.13	63, 0.063
$\sigma^{tot}_{z,rms} [mm] (w BS)$	1.98	ingra	ađe	195	1.81
<i>E</i> ^{SR} _{loss} /turn [GeV]	0.3	1.70	7.5		31.4
$V_{\rm RF}$, tot [GV]	2	6	12		35
$\xi_{x,y}/\text{IP}$	0.086	0.094	0.057		0.075
\mathcal{L} /IP[10 ³⁴ cm ⁻² s ⁻¹]	16	5	1.3	1.0	0.5
#IPs	4	4	4		4
τ _{beam} [min] (rad.B)	38	24	21	26	13
$\tau_{\text{beam}}[\text{min}] (BS, \eta=2\%)$	>106	9	3.5	0.5	~1(η=3%)

similar proposals around the world

Chinese Higgs Factory CEPC + Chinese pp Collider pp collider

50 or 70 km

e⁻e⁺ Higgs Factory

Qing QIN et al

IR optics - momentum acceptance η

Emittances in Circular Colliders & Modern Light Sources

β^* history

IP beam size $\sigma^* = \sqrt{\epsilon \beta^*}$

SuperKEKB – a TLEP demonstrator

 $L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma^{*}} \right)$

beam commissioning will start in early 2015

- β_y*=300 μm (TLEP: 1 mm)
- lifetime 5 min (TLEP: ~15min)
- ε_v/ε_x=0.25% ! (TLEP: 0.2%)
- off momentum acceptance (±1.5%, TLEP: ±2%)
- *e*⁺ production rate (2.5x10¹²/s, TLEP: <1x10¹¹/s)

luminosity of e⁺e⁻ colliders

e⁺e⁻ Higgs factories: luminosity

TLEP technical systems

SC RF at ~800 MHz

as developed for ESS, BNL, CERN SPL

- need 12 GeV/turn at 350 GeV
 - ~600 m of SC RF cavities @ 20 MV/m

- LEP2 had 600 m at 7 MV/m

BNL 5-cell 700 MHz cavity

– high power : ~200 kW / cavity in collider / We could build it to morrow! // We could build it to morrow!

cryogenics system for the RF

like LHC cryo system (~ ½ LHC's)

arc magnets

- ~500-700 G at top energy, ~50 G at injection
- similar to LHeC prototype magnets

LHeC dipole with one-turn conductor & air cooled interleaved laminations [1 mm iron, 2 mm plastic] (CERN)

LHeC dipole w 0.35 mm laminations (BINP)

polarization

80-100 km tunnel in Geneva region

J. Osborne, C. Waaijer, CERN, ARUP & GADZ, submitted to European Strategy Symposium 2012

LEP/LHC

80-100 km tunnel TLEP/VHE-LHC

LEGEND

•

HE_LHC 80km option potential shaft location

o suiz google man hout the setue

Geneva

Saleve

Lake Geneva

is 80-100 km too big?

"Of course, it should not be the size of an accelerator, but its costs which must be minimized."

Gustav-Adolf Voss, builder of PETRA, [†]5. October 2013

FCC study - scope & structure

Future Circular Colliders (FCC) - Conceptual Design Study & Cost Review for next European Strategy Update

Infrastructure

tunnels, surface buildings, transport (access roads), civil engineering, cooling ventilation, electricity, cryogenics, communication & IT, fabrication and installation processes, maintenance, environmental impact and monitoring,

Hadron injectors

Beam optics and dynamics Functional specs Performance specs Critical technical systems Operation concept

Hadron collider

Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs *HE-LHC comparison* Operation concept Detector concept Physics requirements

e+ e- collider

Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs Injector (Booster) Operation concept Detector concept Physics requirements

e-p option: Physics, Integration, additional requirements

two pillars: *pp* & *e*⁺*e*⁻; emphasis on *pp* machine, driving infrastructure

possible long-term strategy

& e[±] (120 GeV) – p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) ≥50 years of e⁺e⁻, pp, ep/A physics at highest energies

tentative long-term time line

back up

synchroton-radiation: heat load

	PEPII	SPEAR3	LEP3	TLEP-Z	TLEP-H	TLEP-t
E (GeV)	9	3	120	45.5	120	175
I (A)	3	0.5	0.0072	1.18	0.0243	0.0054
rho (m)	165	7.86	2625	9000	9000	9000
Linear Power (W/cm)	101.8	92.3	30.5	8.8	8.8	8.8

TLEP has >10 times less SR heat load per meter than PEP-II or SPEAR! (though higher photon energy) N. Kurita, U. Wienands, SLAC

> SR heat per meter lower than for many operating rings