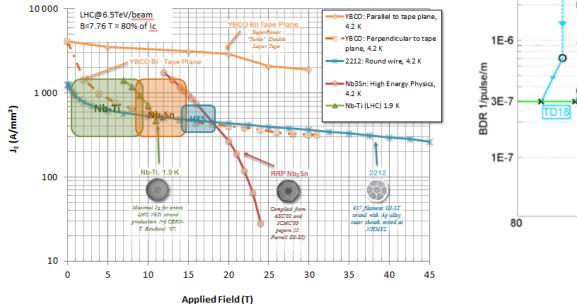
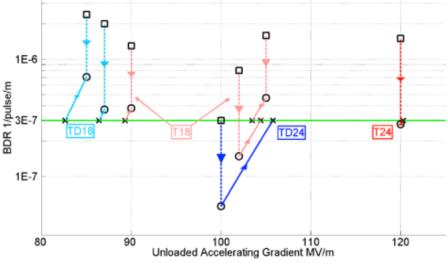
Future Circular Colliders – Conceptual Design Study

Michael Benedikt Sixth TLEP Workshop – 16th October 2013


c) Europe's top priority should be the **exploitation of the full potential of the** *LHC*, including the high-luminosity upgrade of the machine and detectors with a view to collecting **ten times more data than in the initial design, by around 2030**. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quarkgluon plasma.

HL-LHC from a study to a PROJECT 300 fb⁻¹ → 3000 fb⁻¹ including LHC injectors upgrade LIU (Linac 4, Booster 2GeV, PS and SPS upgrade)


"to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update"

d) CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

Future Circular Colliders – Conceptual Design Study

HGA

Michael Benedikt 6th TLEP Workshop - CERN– 16th October 2013

"Very High Energy LHC"

First studies on a new 80 km tunnel in the Geneva area

- 42 TeV with 8.3 T using present LHC dipoles
- 80 TeV with 16 T based on Nb₃Sn dipoles
- 100 TeV with 20 T based on HTS dipoles

HE-LHC :33 TeV with 20T magnets

80-100 km tunnel infrastructure in Geneva area – design driven by pp-collider requirements with possibility of e+-e- (TLEP) and p-e (VLHeC)

FCC (Future Circular Colliders) CDR and cost review for the next ESU (2018) (including injectors)

$15 \text{ T} \Rightarrow 100 \text{ TeV in } 100 \text{ km}$ $20 \text{ T} \Rightarrow 100 \text{ TeV in } 80 \text{ km}$

LEGEND

LHC tunnel

•

HE_LHC 80km option potential shaft location

o 2012 Google Image & 2012 GroBye 1920 2012 IGNI Frank

Geneva

Saleve

FCC Study Scope and Structure

Future Circular Colliders - Conceptual Design Study for next European Strategy Update (2018)

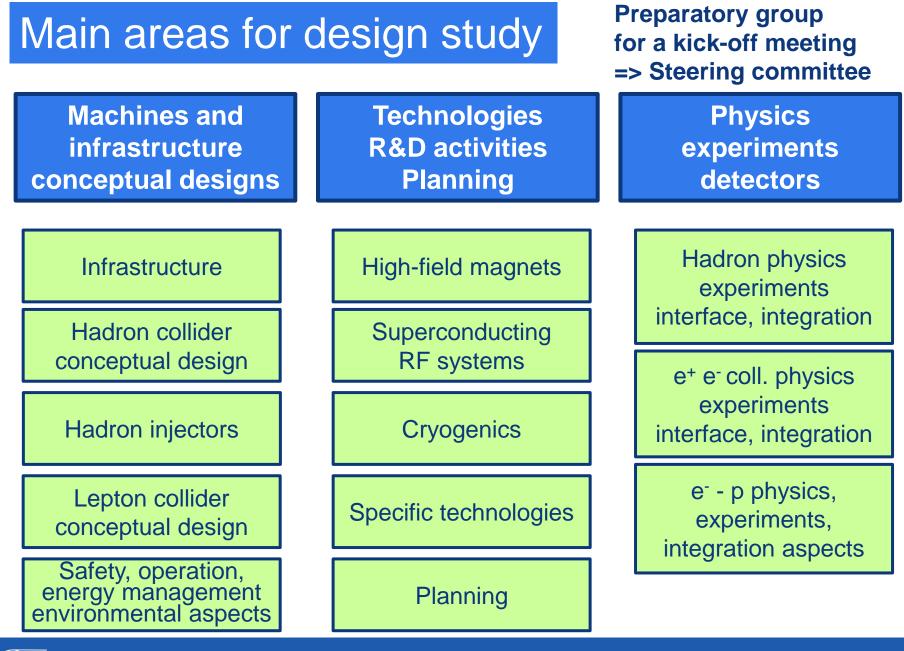
Infrastructure

tunnels, surface buildings, transport (access roads), civil engineering, cooling ventilation, electricity, cryogenics, communication & IT, fabrication and installation processes, maintenance, environmental impact and monitoring,

Hadron injectors

Beam optics and dynamics Functional specs Performance specs Critical technical systems Operation concept

Hadron collider


Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs *HE-LHC comparison* Operation concept Detector concept Physics requirements

e+ e- collider

Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs Injector (Booster) Operation concept Detector concept Physics requirements

e-p option: Physics, Integration, additional requirements

Prel. parameters for FHC (VHE-LHC)

- energy = 100 TeV c.m.
- dipole field = 15 T (baseline)

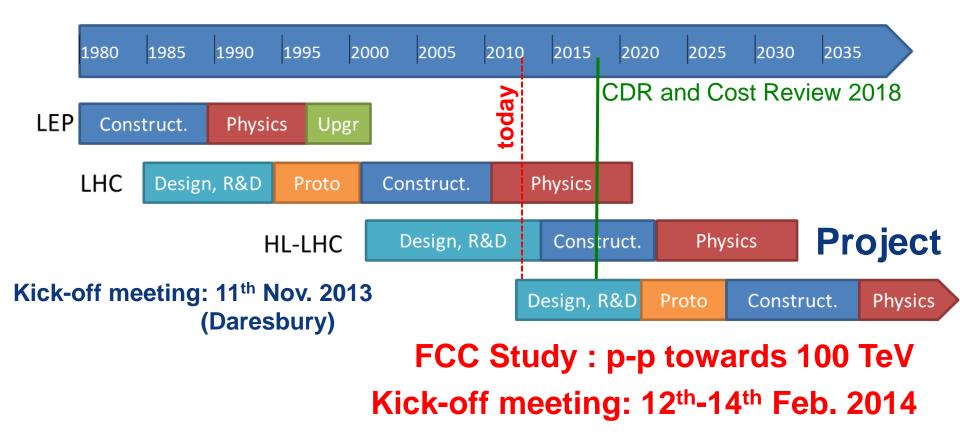
[20 T option] (design limit)

- circumference ~100 km
- #IPs = 2
- total beam-beam tune shift = 0.01
- bunch spacing = 50 ns [5 ns option]
- peak luminosity = 5x10³⁴ cm⁻²s⁻¹
- β* = 1.1 m [2 m conservative option] linked to total beam current (~0.5-1 A)

Prel. parameters for FEC (TLEP)

- energy = 91-Z, 160-W, 240-H, 350-t GeV c.m. (energy upgrade 500-ZHH/ttH)
- circumference ~100 km
- total SR power ≤ 100 MW (design limit)
- #IPs = 2 or 4
- beam-beam tune shift / IP scaled from LEP
- peak luminosity / IP = 5x10³⁴ cm⁻²s⁻¹ at Higgs
- top-up injection
- $\beta_y^* = 1 \text{ mm} \sim \sigma_z$

Prel. parameters FHEC (VHELHC-TLEP)


- e-energy = 60, 120, 250 GeV
- *p* energy = 50 TeV
- spot size determined by p
- e^{-} current from FEC (SR power ≤ 50 MW)
- #IPs = 1 or 2

Future Circular Colliders – Conceptual Design Study Michael Benedikt 6th TLEP Workshop - CERN– 16th October 2013

From M. Benedikt and F. Zimmermann 10

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on **proton-proton and electron- positron** high-energy frontier machines."

FCC: Future Circular Colliders

Summary

- CERN is undertaking an international study for the design of future circular colliders (FCC) in the 100 km range:
 CDR and cost review for the next ESU (target 2018)
- The study is driven by the hadron collider with a c.m. energy of ~100 TeV at the energy frontier, determining also the infrastructure.
- The common study will also contain an e⁺e⁻ collider, as potential intermediate step, and look at an e-p option.
- Preparation of FCC Design Study kick-off meeting: 12-14. February 2014 in Geneva area
 - Establishing international collaborations
 - Set-up study groups and study committees
 - International Advisory Committee (IAC)

Thanks for your attention

