

Civil Engineering (CE) Studies for the ≈80km Tunnel Project

16 October 2013

John Osborne (CERN GS-SE)

- Potential locations
- CE considerations
 - Geotechnical
 - Tunneling
 - Environmental
 - Optimization
- Cost estimate
- Feasibility / Risk issues
- Next steps

Potential locations

- Summer 2012 CERN GS-SE group were asked to study the pre-feasibility of an 80km ring tunnel in the CERN area.
 - Pre-feasibility study of an 80km tunnel project at CERN prepare for the European Strategy for Particle Physics 2012 : <u>https://edms.cern.ch/document/1233485/1</u>
- Options for a ring tunnel have been proposed in the past
 LEP: 30km prior to 27km

LEP 30km and 27km tunnel locations

VLHC 240km tunnel location

VLHC 113km tunnel location

- Several locations have been studied for the possibility to construct an 80km ring tunnel in the CERN area.
 - Location constraints
 - CERN area
 - Connected to LHC/ SPS at one point
 - Depth (access shafts)

	Circumference	Average Depth	Max Depth below surface
LEP/LHC	27 km	100 m	170m
Jura	80 km	590 m	1270 m
Lakeside	80 km	280 m	690 m
Lakeside	47 km	220 m	320 m

Potential locations

• Location 1:

80km Jura option

- Fully housed in France
- 90% in Jura Limestones
- 10% in Molasse
- Connected to LHC
- Shafts every 10km
- Location 2:

80km Lakeside option

- Housed in France and Switzerland
- 10% in Limestones (Jura, Salève)
- 90% in Molasse
- Passes under Lake Geneva
- Around the back of the Salève
- Connected to LHC
- Shafts every 10km

Option 2: 80km Lakeside

• Location 3:

47km Lakeside option

Studied from geotechnical viewpoint

- Fully housed in the Molasse rock (preferred excavation rock in the Geneva area)
- Under Lake Geneva
- In front of Salève and Jura
- Housed in France and Switzerland
- Connected to LHC
- Shafts every 10km
 - Too short for physics goal?

Option 3: 47km Lakeside

Potential locations

- Pre-feasibility study performed by CERN and the specialized firm ARUP.
 - Focused on
 - geology & hydrogeology,
 - tunneling & construction,
 - environmental impacts

 Result: for the 80km long tunnel location 2 '80km Lakeside' is most feasible.

					Risk							_
	water ingress	heaving ground	weak marls	hydro carbons	support & lining	ground response & convergence	hydrostatic pressure & drainage	Pollution of aquifers	effect of shafts on nature	effects of shafts on urban areas	Total	Feasibili
Jura 80	5	3	0	0	5	4	5	5	4	2	33	Lov
Lake 80	2	0	3	3	3	3	2	2	3	2	23	
Lake 47	1	0	2	2	2	2	1	1	2	5	18	Hig

- Potential locations
- CE considerations
 - Geotechnical
 - Tunneling
 - Environmental
 - Optimization
- Cost estimate
- Feasibility / Risk issues
- Next steps

geotechnical

Tunnel passes through

- Moraines
- Molasse
- Limestones

Simplified geological profile

Rock properties

- Moraines
 - Glacial deposits comprising gravel, sands silt and clay
 - Water bearing units
- Molasse
 - Mixture of marls, sandstones and formations of intermediate composition
 - Considered good excavation rock:
 - » Relatively dry and stable
 - » Relatively soft rock

– However, some risk involved

- » Weak marl horizons between stronger layers are zones of weakness
- » Faulting and fissures due to the redistribution of ground stresses
- » Structural instability

Compression strengths

 $\Delta versoe \sigma c$

Roch type	(Mpa)
Sandstone weak	10.6
strong	22.8
Very strong	48.4
Sandy marl	13.4
Marl	5.7

Rock type

CE considerations

geotechnical

L'ANTICLINAL DU RECULET

Above: fractures in Jura Below: model of tunnel collapse due to karst

Rock properties

- Limestones
 - Hard rock
 - Normally considered as sound tunneling rock
 - In this region fractures and karsts encountered
 - » Risk of tunnel collapse
 - » High inflow rates measured during LEP construction (600L/ sec)
 - » Clay-silt sediments in water
 - » Rockmass instabilities

- Evaporates could be encountered
 - Known to exist in the 'deeper' parts of the Jura mountain
 - Unknown if these formations also exist at the foot of the Jura and Salève
 - Contain the mineral anhydrite, which reacts to water and pressure changes -> bad rock for tunneling
 - » Major structural instabilities

- 80km ring passes located :

- Geneva plain
- Underneath Lake Geneva
- Through Jura and Salève Mountains (~ 10%)

– Geneva plain area

- Consists of Moraines and Molasses
 - Tunnel, tunnel enlargements and caverns located in Molasse
 - Shafts located in Moraines and Molasse
- Near CERN the ground conditions are relatively well understood
- More information and studies needed for the south and east areas (below Rhone River and east of Geneva)
- During tunneling hydrocarbons could be encountered -> environmental issues and possible delays

Tunneling

Tunneling

Nyon

10 km

Hermance

510000

Geneva plain Underneath Lake Geneva Through Jura and Salève Mountains

- Lake area consists of Moraines and Molasse
 - Geology is not yet well understood
 - Depth Moraine-Molasse interface needs to be determined
 - Some seismic soundings performed for the possible construction of a road tunnel
 - Problems due to gas trapped in sediments -> more studies needed
 - We know that the depth of the Molasse increases rapidly towards NE
 - To ensure the positioning of the tunnel in the Molasse a minimal depth of ~ 140m is probably required

John Osborne (CERN)

Tunneling

Geneva plain Underneath Lake Geneva Through Jura and Salève Mountains

- Mountain area consists of Limestones and evaporates

- For 10% of tunnel
- Difficult tunneling conditions
 - Local and unpredictable karst features
 - » Water conduits
 - » High flow rates (600L/ sec)
 - Water transports silt-clay sediments
 - » Difficult to drawing off water through pressure relief holes
 - » Increase of water inflow over time
 - » Difficulties in removal of the water
 - » Risk of aquifer pollution & depletion
 - Anhydrites -> 'badrock' causes swelling
 - » Heaving of the tunnel invert
 - » Structural instabilities
 - » <u>Probably</u> low risk for 80km Lakeside option but high risk for 80km Jura option

LEP tunnel collapse

Example of tunnel invert heave Chienberg tunnel, Switzerland

CE considerations

- Excavation methods
 - Tunnel in Molasse
 - TBM for main tunnel
 - » Tunnel advancement rate 150m/ week
 - Rockbreakers and roadheader for tunnel enlargements
 - » Tunnel advancement rate 30m/ week
 - Caverns in Molasse
 - Rockbreakers and roadheader
 - Shafts in Moraines Molasse
 - Traditional excavation methods
 - Rockbreakers and roadheader
 - Special works faced withwater bearing units
 - » Ground freezing
 - » Diaphragm walling
 - Slipform technique for lining shaft

Ground freezing technique used at P5

Tunneling

Tunneling

- Excavation methods
 - Tunnel in Limestone
 - Choice between TBM and Drill & Blast (D&B)
 - » Amount of tunneling through limestones is relatively short; D&B preferred
 - » In areas with karstic features D&B allows free access to the face for grouting/ dewatering ahead of the face
 - » Tunnel advancement rate 20m/ week

Drill & Blast

	Drill & Blast	
Ground Type	Molasse	Jura Limestone
Water Pressures	up to 10bar	up to 30bar?
Lining Options	 One pass undrained lining down to 100m Two pass drained lining below 100m 	Two pass drained lining

- For the 80km tunneling project, the environmental impacts should not be underestimated
 - project crosses many sensitive areas:
 - urban, agriculture, natural parks, protected groundwater areas etc.
 - Some main impacts issues to consider
 - Civil Engineering
 - Social acceptance
 - Landscape
 - Water protection
 - Natural areas
 - Radiation
 - Waste
 - Traffic

CE considerations

- Some examples of issues to consider
 - Civil Engineering
 - Spoil deposit
 - Risk of encountering hydrocarbons in the Geneva plain
 - Risk of polluting aquifers due to Civil Engineering works
 - Risk of depleting aquifers due to pumping water related to water inflow in the tunnel (karst related)
 - Social acceptance & landscape
 - Location of shafts in urban and natural areas
 - Excavated spoil has to be deposited somewhere
 - Electricity cables, roads etc
 - Radiation effects

This is just the tip of the iceberg

Environmental

• Environmental Impact Assessment

(EIA)

- Long process, several stages, start early
- Will have to be approved by <u>both</u>
 FR and CH
 - Approval difficulties may be encountered as with the "Annemasse Railway CEVA", and the Geneva bypass tunnel "La traversee de la rade"

CE considerations

Optimization

- Optimization studies for the project configuration have been started
 - Bypass tunnel in geological and environmental sensitive area
 - Inclined access tunnel in urban area
- More optimization studies needed
 - Incline tunnel?
 - More bypass tunnels?

- Potential locations
- CE considerations
 - Geotechnical
 - Tunneling risks
 - Environmental
 - Optimization
- Cost estimate
- Feasibility / Risk issues
- Next steps

Cost Estimate

- Costing performed by the CERN GS-SE group
- Based on
 - Historical data (LEP, LHC, CLIC, ILC)
 - 2012 CHF unit costs from similar projects and contractors
 - Swiss standard catalogue used for cost breakdown structure
 - NO technical drawings available -> costing based on assumptions for project configuration
 - No optimization studies for the tunnel configuration have been performed yet.

Cost Estimate

- Assumptions
 - Tunnel
 - Internal diameter 5.6m
 - same as CLIC, standard size for European subway tunnels
 - 80km for machine tunnel
 - No tunnel enlargements
 - 33km for bypass tunnel and inclined access tunnel
 - Caverns
 - Two detector caverns
 - Six medium sized caverns at access points
 - Shafts
 - Two 18m internal diameter shafts connecting detector caverns with the surface
 - Five 9m internal diameter access shafts connecting the main tunnel with the surface

Cost Estimate

- Costs
 - Only the <u>minimum</u> civil requirements (tunnel, shafts and caverns) are included
 - 5.5% for external expert assistance (underground works only)
- Excluded from costing
 - Other services like cooling/ ventilation/ electricity etc
 - service caverns
 - beam dumps
 - radiological protection
 - Surface structures
 - Access roads
 - In-house engineering etc etc
- Cost uncertainty = 50%
- Next stage should include costing based on technical drawings

CE works	Costs [kCHF]
Underground	
Main tunnel (5.6m)	
Bypass tunnel & inclined tunnel access	
Dewatering tunnel	
Small caverns	
2 Detector caverns	
Shafts (9m)	
Shafts (18m)	
Consultancy (5.5%)	
TOTAL	

- Potential locations
- CE considerations
 - Geotechnical
 - Tunneling risks
 - Environmental
 - Optimization
- Cost estimate
- Feasibility / Risk issues
- Next steps

Feasibility / Risk Issues

Some examples of issues (that need further studies)

- Geotechnical
 - Unknown geology in lake area
 - Local ground stresses unknown
 - Risk of water ingress in limestone areas & moraines
- Tunneling
 - Risks related to karstic features and weak zones (faulting) in Jura
 - Degree of tunneling support
 - Heave of tunnel invert

					Risk							
	water ingress	heaving ground	weak marls	hydro carbons	support & lining	ground response & convergence	hydrostatic pressure & drainage	Pollution of aquifers	effect of shafts on nature	effects of shafts on urban areas	Total	Fea
Jura 80	5	3	0	0	5	4	5	5	4	2	33	
Lake 80	2	0	3	3	3	3	2	2	3	2	23	
Lake 47	1	0	2	2	2	2	1	1	2	5	18	K

Feasibility / Risk Issues

Some examples of issues (needs to be studied in more detail)

- Environment
 - Risk of environmental impacts such as civil engineering, social acceptance, pollution of aquifers etc
 - Risk of encountering hydrocarbons
 - Risk of EIA rejection
- Costs
 - Risk of cost increase due to all issues mentioned

					Risk							
	water ingress	heaving ground	weak marls	hydro carbons	support & lining	ground response & convergence	hydrostatic pressure & drainage	Pollution of aquifers	effect of shafts on nature	effects of shafts on urban areas	Total	Feasibilit
Jura 80	5	3	0	0	5	4	5	5	4	2	33	Low
Lake 80	2	0	3	3	3	3	2	2	3	2	23	
Lake 47	1	0	2	2	2	2	1	1	2	5	18	🕂 Higł

- Potential locations
- CE considerations
 - Geotechnical
 - Tunneling risks
 - Environmental
 - Optimization
- Cost estimate
- Feasibility / Risk issues
- Next steps

Next Steps

- Project only in its very initial stage
- To continue further the following steps are required
 - Define project requirements
 - Detector cavern requirements, dump caverns, shielding requirements, other services defined, etc.etc.
 - Optimization studies for the tunnel configuration
 - E.g. tunnel inclination, shaft locations, possible increase tunnel circumference etc.
 - Create preliminary technical Civil Engineering designs
 - Continue feasibility studies
 - Continue environmental impact studies

