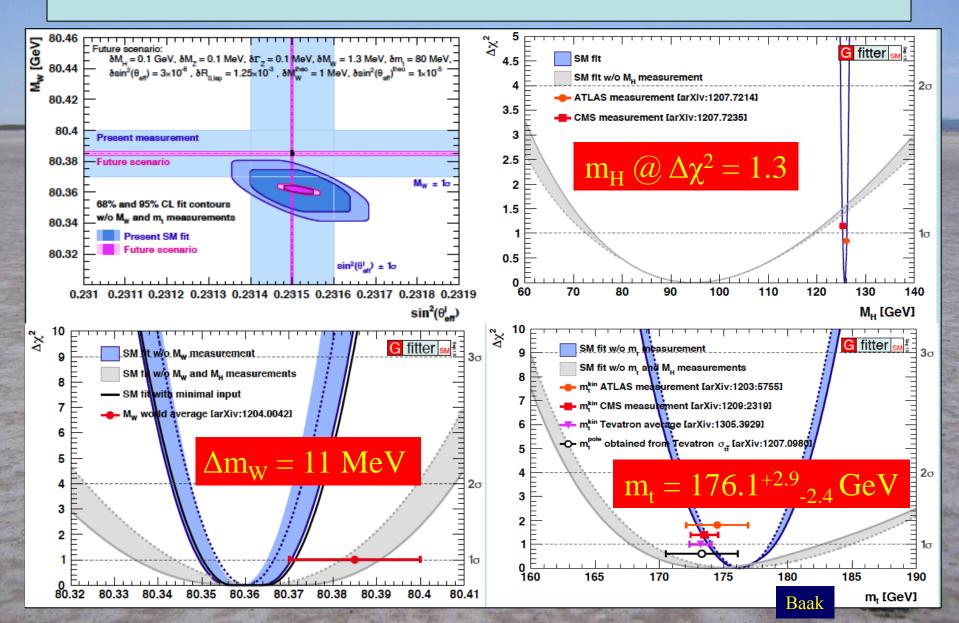
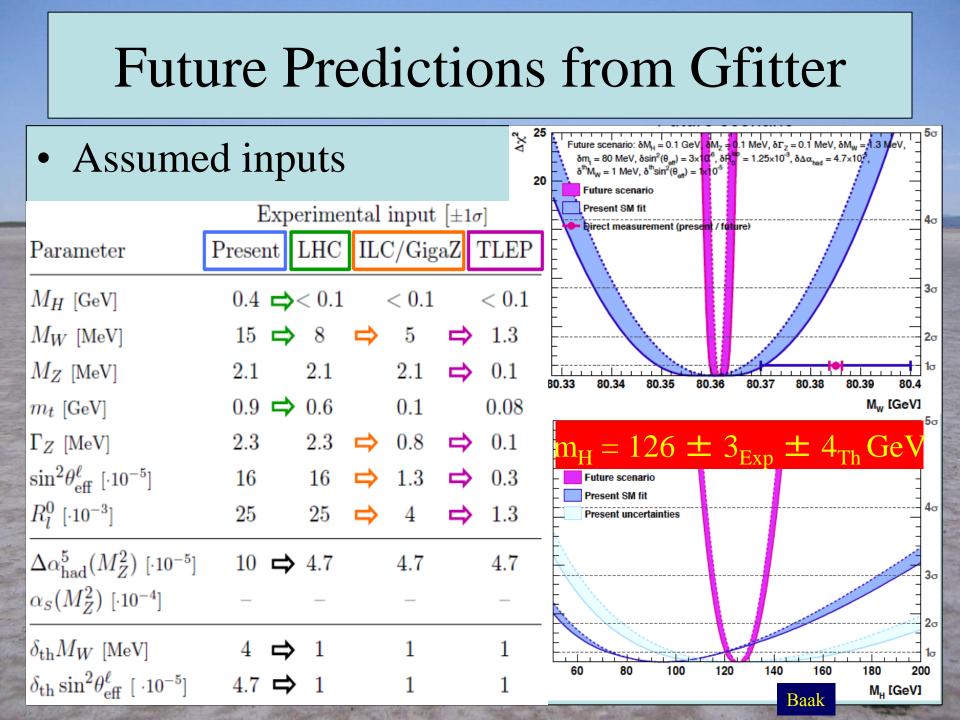

TLEP: Part of a Vision for the Future

Exploration of the 10 TeV scale Direct (VHE-LHC) + Indirect (TLEP) Need major effort to develop the physics case Work together

The Twin Pillars of TLEP Physics


Precision Measurements


- Springboard for sensitivity to new physics
- Theoretical issues:
 - Higher-order QCD
 - Higher-order EW
 - Mixed QCD + EW
- Experimental issues
 - Patrick

Rare Decays

- Direct searches for new physics
- Many opportunities
- Z: 10¹²
- b, c, τ: 10¹¹
- W: 10⁸
- H: 10⁶
- t: 10^6

Present Predictions from Gfitter

TLEP Measurements & New Physics

• Assumed future measurements

	Current data	before TLEP	TLEP-Z	TLEP-Z (pol.)	TLEP-W	TLEP-t
$\alpha_s(M_Z^2)$	0.1184 ± 0.0006	???				
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	0.02750 ± 0.00033	± 0.00005 (?)				
$M_{\mathbf{Z}}$ [GeV]	91.1875 ± 0.0021		± 0.0001			
$m_t \; [\text{GeV}]$	173.2 ± 0.9	± 0.5 (?)				± 0.016
$m_h \; [\text{GeV}]$	125.6 ± 0.3	± 0.15 (?)				
M_W [GeV]	80.385 ± 0.015	± 0.010 (?)			± 0.00064	
Γ_W [GeV]	2.085 ± 0.042				???	
$\Gamma_{\mathbf{Z}}$ [GeV]	2.4952 ± 0.0023		± 0.0001			
σ_h^0 [nb]	41.540 ± 0.037		???			
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012		???			
Ppol	0.1465 ± 0.0033		???			
Ae	0.1513 ± 0.0021			± 0.000021		
\mathcal{A}_{c}	0.670 ± 0.027			???		
	0.923 ± 0.020			???		
$\begin{array}{c} \mathcal{A}_{b} \\ A_{\rm FB}^{0,\ell} \\ A_{\rm FB}^{0,c} \\ A_{\rm FB}^{0,b} \\ A_{\rm FB}^{0,b} \\ R_{\ell}^{0,b} \\ R_{\ell}^{0} \\ R_{b}^{0} \end{array}$	0.0171 ± 0.0010		???			
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035		???			
$A_{\rm FB}^{\bar{0},\bar{b}}$	0.0992 ± 0.0016		???			
R_{ℓ}^{0}	20.767 ± 0.025		± 0.001			
$R_c^{\tilde{0}}$	0.1721 ± 0.0030		???			
$R_{b}^{\bar{0}}$	0.21629 ± 0.00066		± 0.00006		Mishim	a

Theoretical Uncertanties

We assume that theoretical uncertainties will be reduced by calculating three-loop contributions of $O(\alpha^2 \alpha_s)$ and $O(\alpha^3)$.

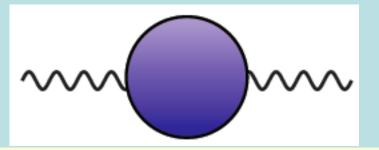
	TLEP		Par	Theoretical uncertainty					
	direct	α_s	$\alpha_s \Delta \alpha_{\rm had}^{(5)} M_Z m_t m_h \text{Total}$						future
δM_W [MeV]	± 0.64	± 0.36	± 0.91	± 0.13	± 0.10	± 0.14	± 1.00	± 4	± 1
$\delta \Gamma_Z [\text{MeV}]$	± 0.1	± 0.3	± 0.0	± 0.0	± 0.0	± 0.0	± 0.3	± 0.5	± 0.1
$\delta \mathcal{A}_{\ell} \ [10^{-5}]$	± 2.1	± 1.6	± 13.7	± 0.6	± 0.4	± 0.9	± 13.9	± 37.0	± 11.8

 $\delta \sin^2 \theta_{\rm eff}^{\rm lept} = 4.7 \times 10^{-5} \ \rightarrow \ 1.5 \times 10^{-5}$

Hadronic contribution to α :

At present: $\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = 0.02750 \pm 0.00033$

Burkhardt & Pietrzyk (11) (see also Davier et al(11); Hagiwara et al(11); Jegerlehner(11))


measured with inclusive processes.

smaller uncertainty (~ 0.00010) if using exclusive processes with pQCD, etc.

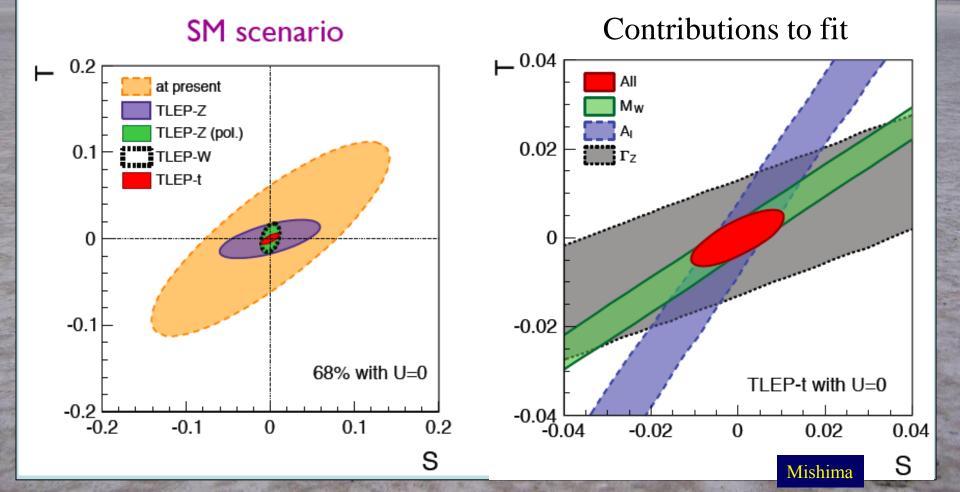
assume $\delta(\Delta \alpha_{had}^{(5)}(M_Z^2)) \sim 0.00005$ from low-en

Sensitivity to New Physics

- Oblique Parameters
- (vacuum polarizations)

Mishima

 $\delta M_W, \, \delta \Gamma_W \propto -S + 2c_W^2 T + rac{(c_W^2 - s_W^2) U}{2s_W^2}$


 $\delta \Gamma_{Z} \propto -10(3 - 8s_{W}^{2}) \, S + (63 - 126s_{W}^{2} - 40s_{W}^{4}) \, T$

others $\propto S - 4c_W^2 s_W^2 T$

- Expect $U \ll S, T$
- Will need effort to reduce theoretical uncertainties to realize sensitivities < 10⁻²

Sensitivity to Oblique Parameters

 $\delta S \sim 7 imes 10^{-3}, \quad \delta T \sim 4 imes 10^{-3}$

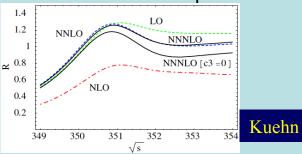
Sensitivity to New Physics

• Higher-dimensional operators induced by high-E physics $\mathcal{O}_{WB} = (H^{\dagger} \tau^a H) W^a_{\mu\nu} B^{\mu\nu}$ SM scenario ζi/Λ² [TeV⁻ⁱ at present $\mathcal{O}_H = |H^{\dagger} D_{\mu} H|^2$ 0.02 $\mathcal{O}_{LL} = \frac{1}{2} (\overline{L} \gamma_{\mu} \tau^{a} L)^{2}$ -0.02 $\mathcal{O}'_{HL} = i(H^{\dagger}D_{\mu}\tau^{a}H)(\overline{L}\gamma^{\mu}\tau^{a}L)$ -0.04 С'нь С'но $\mathcal{O}'_{HO} = i(H^{\dagger}D_{\mu}\tau^{a}H)(\overline{Q}\gamma^{\mu}\tau^{a}Q)$ Cwb Сн Сп CHE CHL Сно Сни Снр Mishima NP scenario $\mathcal{O}_{HL} = i(H^{\dagger}D_{\mu}H)(\overline{L}\gamma^{\mu}L)$ С_i/Λ² [ТеV⁻²] TLEP-t $\mathcal{O}_{HQ} = i(H^{\dagger}D_{\mu}H)(\overline{Q}\gamma^{\mu}Q)$ $\mathcal{O}_{HE} = i(H^{\dagger}D_{\mu}H)(\overline{E}\gamma^{\mu}E)$ $\mathcal{O}_{HU} = i(H^{\dagger}D_{\mu}H)(\overline{U}\gamma^{\mu}U)$ -0.05 $\mathcal{O}_{HD} = i(H^{\dagger}D_{\mu}H)(\overline{D}\gamma^{\mu}D)$ C_{WB} Сн C_{LL} C'HL C'HQ CHE CHL С_{но} C_{HU}

Sensitivity to New Physics

 Sensitivity to coefficients of possible higherdimensional operators induced by high-E physics (in TeV units)

	at present		TLEP-Z		TLEP-Z (pol.)		TLEP-W		TLEP-t	
Coefficient	$C_{i} = -1$	$C_i = 1$	$C_{i} = -1$	$C_i = 1$	$C_{i} = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$
C_{WB}	12.0	12.0	15.2	15.2	31.3	31.1	31.3	31.5	38.3	38.9
C_H	7.4	7.4	13.6	13.6	13.9	13.7	14.0	14.1	27.9	27.8
C_{LL}	8.1	8.1	19.3	19.3	19.9	19.9	25.4	25.5	27.6	27.7
C'_{HL}	10.9	10.9	21.2	21.1	25.9	25.7	25.8	25.8	31.2	30.9
C'_{HQ}	9.0	9.1	19.5	19.3	19.5	19.4	19.4	19.2	19.6	19.6
C_{HL}	10.4	10.4	21.5	21.5	21.5	21.9	28.6	28.5	28.3	28.4
C_{HQ}	5.4	5.5	14.9	14.9	15.0	14.9	15.1	15.0	15.0	15.0
C_{HE}	8.9	8.9	22.2	22.2	30.2	30.0	30.1	30.3	31.2	31.2
C_{HU}	3.7	3.7	8.0	8.0	8.1	8.1	8.1	8.1	8.3	8.3
C_{HD}	3.2	3.2	7.1	7.0	7.1	7.1	7.0	7.1	7.1	7.1

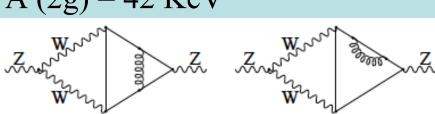

Mishima

- Substantial improvement in sensitivity
- Reach well into multi-TeV range

(Mainly) QCD Uncertainties

- $\Gamma_{\rm b}$: Higgs WG: $\Delta \Gamma_{\rm b} = 7.5\%$ should be 1.7%
 - Higher-order QCD 0.25%
 - m_b uncertainty overstated by factor 4
 - Error could be reduced by running SuperKEK-B above Υ
 - 5-loop running underway
 - Need inputs from LE: m_b , m_c , α_{EM} , α_s
 - 0.3% possible
 - M_W:
 - 4-loop uncertainty of 2.1 MeV insufficient: use MS m_t
 - Could do 4-loop mixed EW/QCD
 - m_t:

– calculation of σ at NNNLO underway

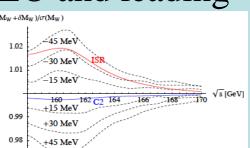


(Mainly) QCD Uncertainties

• Γ_Z:

• Γ_b:

- $-\Delta$ (non-singlet) = 101 KeV
- $\Delta(\text{singlet}) V (3g) = 2.7 \text{ KeV}, A (2g) = 42 \text{ KeV}$
- Difficult to do next order


Kuehn

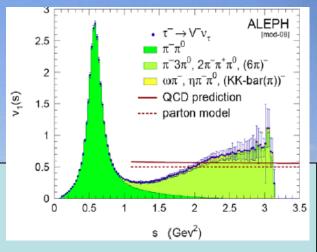
leeer

- Correction @ $G_F m_t^2 \alpha_s^2 = 0.1 \text{ MeV}$
- Smaller corrections if use MSbar m_t, but need to know 4-loop conversion (underway)
- Not well-defined at higher order: bbcc final states!
- Γ_W:
 - Mixed EW/QCD calculated @ 2-loop: -0.55 MeV
 - 3-loop $\alpha_W \alpha_s^2$ difficult but feasible

WW Production at Threshold

- Aim at $\Delta m_W < 1$ MeV: need $\Delta \sigma << 0.1\%$
- Current $\Delta m_W < 4 \text{ MeV}$
 - Should make off-shell treatment:
 - 4-fermion production known @ NLO and leading NNLO
 - Threshold corrections included
 - Need more understanding of ISR
 - NNLO EW calculation of on-shell WW within reach
 - Sufficient for $\Delta m_W < 1 \text{ MeV}$
 - NNLO off-shell calculation beyond current reach

Schwinr


High-Energy Measurements of α_s

- TLEP study quotes $\Delta \alpha_s = 0.0002$ from Z decays based on NNNLO calculation
- W decays could yield $\Delta \alpha_s = 0.00015?$
- Important CKM uncertainty, mainly due to ΔV_{cs}
 - Assume unitarity? Measure V_{cs} better?
- Possible strategy: Use Z value @ W to measure
 V, use @ τ to constrain non-perturbative effects

Dissertori

• Need to study uncertainty in running

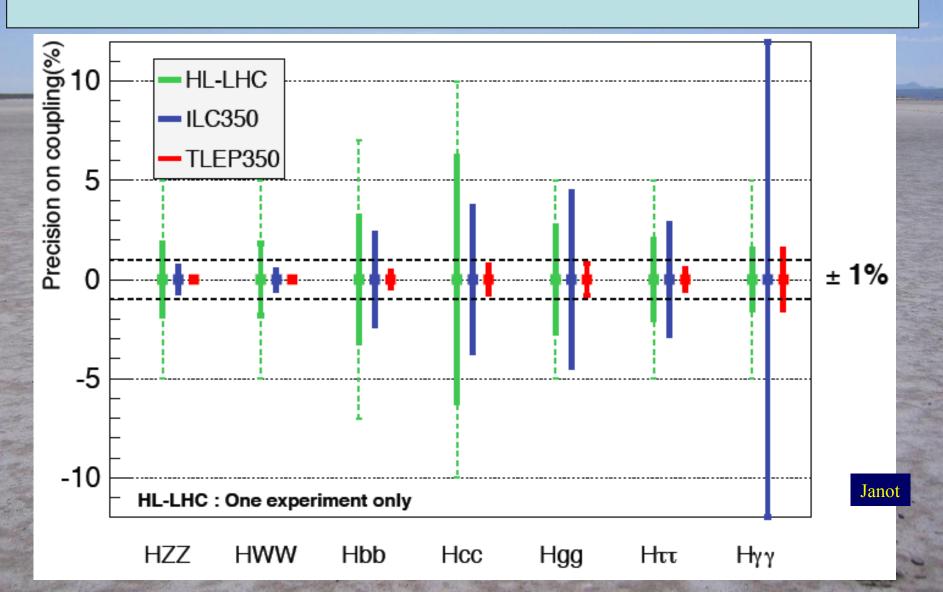
Measurement of α_s in τ Decays

E (GeV

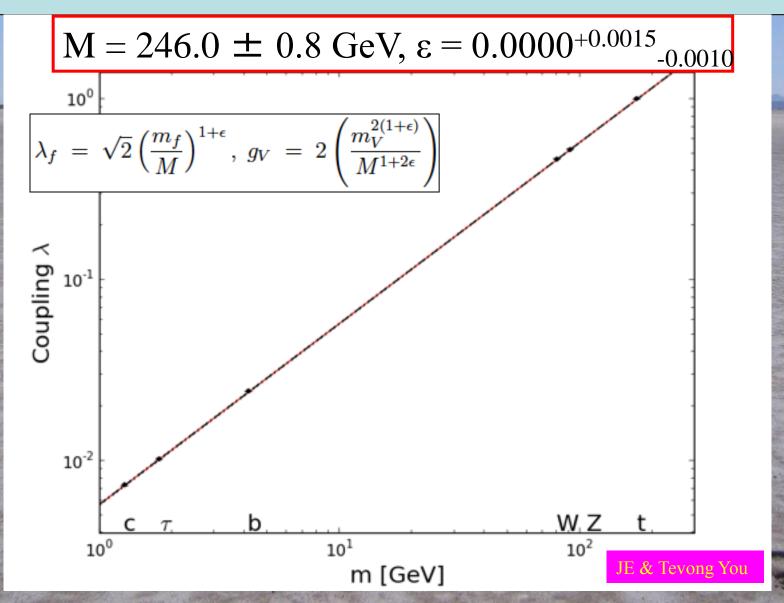
Pich

- LEP data still dominate τ analyses
 - Systematic uncertainties at B factories
- Assume charged-current universality OK, but check W to $\tau v/\mu v$
- QCD predicts moments of spectral function
 Expect small non-perturbative piece, can be fitted from data
- 2 ways of summing QCD give estimate of error: $\alpha_s(m_\tau) = 0.339 \text{ vs } 0.318, \alpha_s(m_Z) = 0.1210 \text{ vs } 0.1198$
- Uncertainty due to running: c threshold!

Possible Future Higgs Measurements

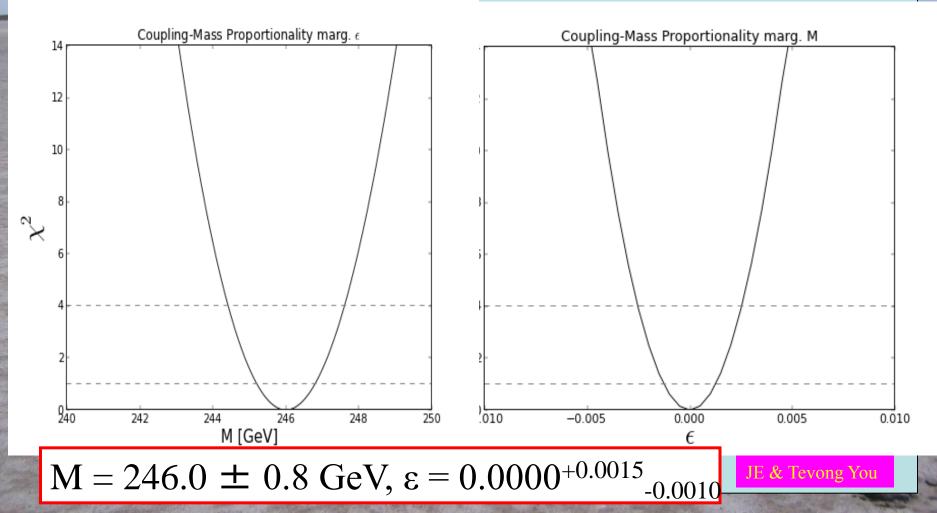

Facility		ILC		ILC(LumiUp)	TLI	P (4 IP)	CLIC		
\sqrt{s} (GeV)	250	500	1000	1000 250/500/1000		350	350	1400	3000
$\int \mathcal{L} dt \ (\text{fb}^{-1})$	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^-, e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0, 0)	(0, 0)	(-0.8, 0)	(-0.8, 0)	(-0.8, 0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	-	5.9%	$<\!\!5.9\%$
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	-	11%	5.6%
κ_{τ}	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	_	14%	3.2%	2.0%	-	13%	-	4.5%	$<\!\!4.5\%$
BR_{inv}	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%			

• Interpretation?


• Theoretical uncertainties and new physics interpretations

Janot

Possible Future Higgs Measurements



H Coupling Measurements @TLEP

Global Analysis of Higgs @ TLEP

Rare Leptonic Z Decays?

Silvestrini

- Upper limits from flavour-changing neutral currents (FCNC)
 - Current and future $BR(\mu \rightarrow eee) \cdot 10^{-12}$ bounds on LFV μ and • $BR(\tau \rightarrow \mu\mu\mu) \cdot 2 \ 10^{-8} \ (10^{-9})$ τ decays: • $BR(\tau \rightarrow eee) \cdot 3 \ 10^{-8} \ (10^{-9})$
 - These bounds imply: $BR(Z \rightarrow \mu e) < 3.10^{-13}$ • $BR(Z \rightarrow \tau \mu) < 4.10^{-8} (2.10^{-9})$ • $BR(Z \rightarrow \tau e) < 6.10^{-8} (2.10^{-9})$

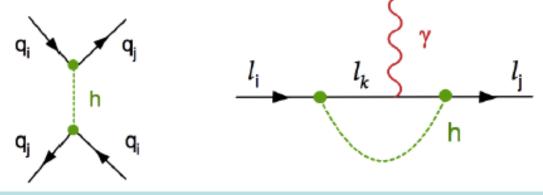
• Measuring BR($Z \rightarrow \tau e$) & BR($Z \rightarrow \tau \mu$) better than 10⁻⁹ would overcome future bounds on LFV decays

Rare Hadronic Z Decays?

- Upper limits from flavour-changing neutral currents (FCNC)
- From present expts in B physics one gets

 \Rightarrow BR(Z \rightarrow bd) <~ 10⁻⁹, BR(Z \rightarrow bs) <~ 2 10⁻⁸

- How far can TLEP go? How will b id perform?
- From D mixing one gets $|U_{uc}| < ~2 \ 10^{-3}$


 \Rightarrow BR(Z \rightarrow cu) <~ 5 10⁻⁷

Opportunities

Silvestrini

Rare Higgs Decays?

• Upper limits from FCNC, EDMs, ...

- Quark FCNC bounds exclude observability of quark-flavour-violating h decays
- Lepton-flavour-violating *h* decays could be large:
 BR(τμ) or BR(τe) could be O(10)%

Blankenburg, JE, Isidori: arXiv:1202.5704

BR(µe) must be $< 2 \times 10^{-5}$

Flavour-Changing Higgs Couplings?

- Constraints on quarkflavour-changing couplings from FCNC
- Constraints on leptonflavour-changing couplings

		<u> </u>			Contraction of the second s	—			
Operator	Eff. couplings	95% C.L	. Bound	Observables	Ope	erator	Eff. coupling	gs Bound	Constraint
		$ c_{ m eff} $	$ \mathrm{Im}(c_{\mathrm{eff}}) $		$(\bar{\mu}_R e_L)(\bar{q}_L q_R)$	$(\bar{\mu}_L e_R)(\bar{q}_L q_R)$	$ c_{\mu e} ^2, c_{e \mu} $	2 3.0 × 10 ⁻	⁸ $\mathcal{B}_{\mu \to e}(\mathrm{Ti}) < 4.3 \times 10^{-12}$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$c_{sd} c_{ds}^*$	$1.1 imes 10^{-10}$	4.1×10^{-13}	$\Delta m_K; \epsilon_K$		$(\bar{\tau}_L \mu_R)(\bar{\mu}_L \mu_R)$	$ c_{\tau\mu} ^2, c_{\mu\tau} $		
$(\bar{s}_R d_L)^2, \ (\bar{s}_L d_R)^2$	c_{ds}^2, c_{sd}^2	$2.2 imes 10^{-10}$	$0.8 imes 10^{-12}$, $(\bar{\tau}_L e_R)(\bar{\mu}_L \mu_R)$	$ c_{\tau e} ^2, c_{e\tau} $		
$(ar{c}_Ru_L)(ar{c}_L u_R)$	$c_{cu} c_{uc}^*$	$0.9 imes 10^{-9}$	$1.7 imes 10^{-10}$	$\Delta m_D; q/p , \phi_D$		$(\bar{\tau}_L e_R)(\bar{\mu}_L e_R)$	$ c_{\mu e}c_{e\tau}^* , c_{\mu e}c_{e\tau}^* $		· · · · ·
$(\bar{c}_R u_L)^2, \ (\bar{c}_L u_R)^2$	c_{uc}^2, c_{cu}^2	$1.4 imes 10^{-9}$	2.5×10^{-10}			$, (\bar{\tau}_L e_R)(\bar{\mu}_R e_L) \\ , (\bar{\tau}_L e_R)(\bar{\mu}_R e_L) $	$ c_{\mu e}^{*}c_{e\tau}^{*} , c_{\mu e}^{*}c_{e\tau}^{*} $		1 (<i>i</i> , <i>µ</i> cc) (1.5 × 10
$(ar{b}_R d_L)(ar{b}_L d_R)$	$c_{bd} c^*_{db}$	$0.9 imes 10^{-8}$	$2.7 imes 10^{-9}$	$\Delta m_{B_d}; S_{B_d \to \psi K}$					$4 \Gamma(\tau \to \bar{e}\mu\mu) < 1.7 \times 10^{-8}$
$(\bar{b}_R d_L)^2, (\bar{b}_L d_R)^2$	c_{db}^2, c_{bd}^2	$1.0 imes 10^{-8}$	$3.0 imes 10^{-9}$			$(\bar{\tau}_L \mu_R)(\bar{e}_L \mu_R)$	$ c_{e\mu}c^*_{\mu\tau} , c_{e\mu}c^*_{\mu\tau} $		$\Gamma(\gamma \rightarrow e\mu\mu) < 1.7 \times 10$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$c_{bs} c^*_{sb}$	$2.0 imes 10^{-7}$	$2.0 imes 10^{-7}$	Δm_{B_s}	$(\tau_R \mu_L)(e_R \mu_L)$	$(\bar{\tau}_L \mu_R)(\bar{e}_R \mu_L)$	$ c_{\mu e}^* c_{\mu \tau}^* , c_{\mu e}^* c_{\mu \tau}^* $	^ζ τμ	
$(\bar{b}_R s_L)^2, (\bar{b}_L s_R)^2$	c_{sb}^2, c_{bs}^2	$2.2 imes 10^{-7}$	2.2×10^{-7} 2.2×10^{-7}		Eff. co	Eff. couplings Bound		ınd	Constraint
Eff. couplings	Bound		Constraint		$ c_{e\tau}c_{\tau e} $	$(c_{e\mu}c_{\mu e})$	$1.1 imes 10^{-2}$	(1.8×10^{-1})	$ \delta m_e < m_e$
					$ \operatorname{Re}(c_{e\tau}c_{\tau e}) $	$(\operatorname{Re}(c_{e\mu}c_{\mu e}))$	$0.8 imes 10^{-2}$	(1.4×10^{-1})	$ \delta a_e < 6 \times 10^{-12}$
$ c_{sb} ^2, \ c_{bs} ^2$	2.9×10^{-5}			$< 1.4 \times 10^{-8}$	$ \mathrm{Im}(c_{e\tau}c_{\tau e}) $	$(\mathrm{Im}(c_{e\mu}c_{\mu e}))$	$1.1 imes 10^{-7}$	(1.9×10^{-6})	$ d_e < 1.6 \times 10^{-27} \ ecm$
$ c_{db} ^2, c_{bd} ^2$	1.3×10^{-9}	$\mathcal{B}(B_d - \mathcal{B}_d)$	$\rightarrow \mu^+\mu^-$) <	$< 3.2 imes 10^{-9}$		$c_{\tau\mu}$	2		$ \delta m_{\mu} < m_{\mu}$
States 2 - Mar	The I want the set	1 the stand of		Cor same		$ _{\mu\tau}c_{\tau\mu}) $	2×1	10^{-2}	$ \delta a_{\mu} < 4 \times 10^{-9}$
				1 F 12		$ _{\mu\tau}c_{\tau\mu}) $	8	}	$ d_{\mu} < 1.2 \times 10^{-19} \ e \mathrm{cm}$
Blankenburg, JE, Isidori: arXiv:1202.5704				$ c_{e\tau}c_{\tau\mu} , c_{\tau e}c_{\mu\tau} $ 2.4×10^{-6}		10^{-6}	$\mathcal{B}(\mu \to e \gamma) < 2.4 \times 10^{-12}$		
			0.000		$ c_{\mu\tau} ^2$	$ c_{\tau\mu} ^2$	6.6 imes	10^{-1}	$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$
and the second				Casha Call	$ c_{e\tau} ^2$	$ c_{\tau e}^{*} ^{2}$	$4.7 \times$	10^{-1}	$\mathcal{B}(\tau \to e\gamma) < 3.3 \times 10^{-8}$

Neutrino Counting?

- Z line shape
- Jarlskog's theorem

Theorem.

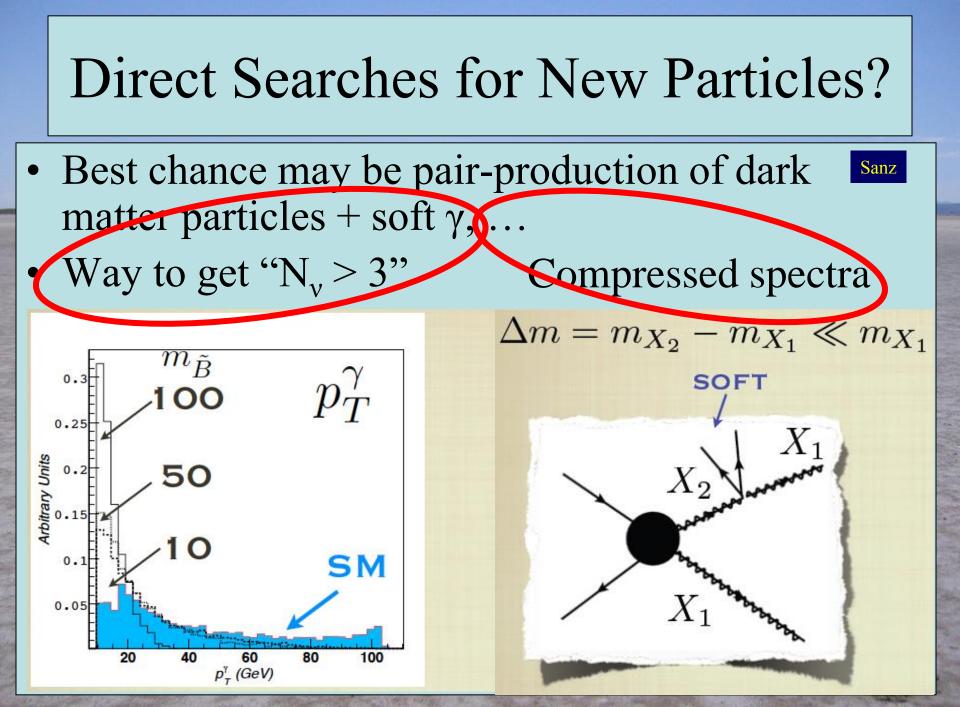
In the standard model, with n left-handed lepton doublets and N - n right-handed neutrinos, the effective number of neutrinos, $\langle n \rangle$, defined by

 $\Gamma(\mathbf{Z} \rightarrow \text{neutrinos}) \equiv \langle n \rangle \Gamma_0$,

where Γ_0 is the standard width for one massless neutrino, satisfies the inequality

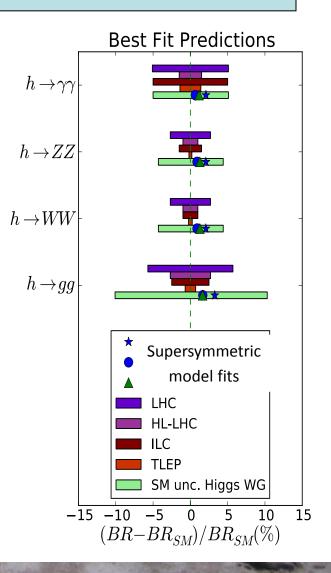
Blondel

"Neutrino Counting"


- On Z peak:
- $N_{v} = 2.984 \pm 0.008$

-2σ:^)!!

Blondel


Piccinin

- Error ΔN_v dominated by ΔL , theory dominated:
- Bhabha uncertainty ± 0.0046
- Building blocks available to bring perturbative error < 0.1%
- Radiative return: $N_v = 2.92 \pm 0.05$
- EW corrections!
- Useful to study WWγ vertex: EW NLO

Impact of Higgs Measurements

- Predictions of current best fits in simple SUSY models
- Current uncertainties in SM calculations [LHC Higgs WG]
- Comparisons with
 - LHC
 - HL-LHC
 - ILC
 - TLEP
- Don't decide before LHC 13/4

cf, LEP and LHC

- "Those who don't know history are doomed to repeat it..."
 - Edmund Burke
- "... and maybe also those who do."
- LEP: Precision Z studies, W+W-, search for Higgs, anything else
- LHC: search for Higgs, anything else
- Do not decide anything until LHC 13/4