The case for QCD and γ-γ studies at TLEP

6th TLEP Workshop CERN, Geneva – 17th Oct 2013

David d'Enterria CERN

Some thoughts for QCD and y-y studies at TLEP

6th TLEP Workshop CERN, Geneva – 17th Oct 2013

David d'Enterria CERN

QCD in e⁺e⁻ collisions at TLEP

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe q,g dynamics:

Advantages compared to p-p at the LHC:

- Electroweak initial-state with known kinematics
- No QCD "underlying event"
- Smaller QCD radiation (only in final-state) & smaller non-perturbative effects (no PDFs)

0.5

 $\alpha_{s}(Q_{0})$, crucial for many SM precision fits, accessible w/ high accuracy:

- N³LO: hadronic cross sections, also W, $\tau \rightarrow$ hadrons (Dissertori,Pich's talks)
- NNLO: 3-jets rates, event shapes (thrust)

David d'Enterria (CERN)

Oct. 2013

$\gamma \gamma$ interactions in an e⁺e⁻ collider

Electromagnetic field of high-energy charge = equivalent photon flux. Weizsäcker-Williams (EPA) spectrum for e[±] beam:

Photon-photon collisions provide complementary physics capabilities to e+e- (e.g. for scalar C-even systems) but w/ reduced lumis & energies:

- $\mathscr{L}_{\eta}(W_{\eta} > 0.1 \cdot E_{e}) \sim 10^{-2} \mathscr{L}_{e^{+e^{-}}}$
- $\mathscr{L}_{\gamma}(W_{\gamma} > 0.5 \cdot E_{e}) \sim 0.4 \cdot 10^{-3} \mathscr{L}_{e^{+e^{-1}}}$

(Main reason for Compton-backscattered laser-photons at PLC: $E_{\gamma} \sim E_{e}$, $\mathscr{L}_{\gamma} \sim 0.8 \cdot \mathscr{L}_{e+e}$)

Effective $\gamma \gamma$ luminosities at TLEP

■ Fig. of merit: Convolve e⁺e⁻ EPA spectra, scale by \mathscr{L}_{ee} ~10³⁴ cm⁻²s⁻¹

Thanks to large TLEP lumi: Left (γγ)~5–10 times higher than p-p(γγ) at LHC over large W_{γγ} range (and without huge LHC p-p pileup).
 Forward detectors (~mrad) needed to double tag outgoing e+e-

"Golden" physics channels for a $\gamma\gamma$ collider

Reaction	Remarks	
$\gamma\gamma \to H, h \to bb$	SM/MSSM Higgs, $M_{H,h} < 160 \text{ GeV}$	<u>)</u>
$\gamma\gamma \to H \to WW(^*)$	SM Higgs, $140 < M_H < 190$ GeV	
$\gamma\gamma ightarrow H ightarrow ZZ(^*)$	SM Higgs, $180 < M_H < 350$ GeV	> SM Higgs
$\gamma\gamma ightarrow H ightarrow \gamma\gamma$	SM Higgs, $120 < M_H < 160$ GeV	
$\gamma\gamma \to H \to t\overline{t}$	SM Higgs, $M_H > 350$ GeV	2
$\gamma\gamma \rightarrow H, A \rightarrow bb$	MSSM heavy Higgs, interm. $\tan \beta$	
$\gamma\gamma \to \tilde{f}\tilde{f}, \; \tilde{\chi}_i^+\tilde{\chi}_i^-$	large cross sections	
$\gamma\gamma ightarrow ilde{g} ilde{g}$	measurable cross sections	
$\gamma\gamma \to H^+H^-$	large cross sections	7 505 Y
$\gamma\gamma \to S[\tilde{t}\bar{t}]$	$\tilde{t}\bar{t}$ stoponium	
$e\gamma ightarrow ilde{e}^- ilde{\chi}_1^0$	$M_{\tilde{e}^{}} < 0.9 \times 2E_0 - M_{\tilde{\chi}^0_1}$)
$\gamma\gamma \to \gamma\gamma$	non-commutative theories	ר ⁻
$e\gamma ightarrow eG$	extra dimensions	
$\gamma\gamma \rightarrow \phi$	Radions	
$e\gamma \rightarrow \tilde{e}\tilde{G}$	superlight gravitions	2
$\gamma\gamma ightarrow W^+W^-$	anom. W inter., extra dimensions	
$e\gamma \rightarrow W^- \nu_e$	anom. W couplings	Anomalous
$\gamma\gamma \to 4W/(Z)$	WW scatt., quartic anom. W,Z	J couplings
$\gamma\gamma ightarrow tar{t}$	anomalous top quark interactions	
$e\gamma \to \bar{t}b\nu_e$	anomalous Wtb coupling	f τοp
$\gamma\gamma \rightarrow hadrons$	total $\gamma\gamma$ cross section	<u></u>
$e\gamma \to e^- X, \nu_e X$	NC and CC structure functions	
$\gamma g ightarrow q ar q, \ c ar c$	gluon in the photon	ך ענט
$\gamma\gamma ightarrow J/\psi J/\psi$	QCD Pomeron	J

[A.deRoeck PLHC'08]

"Golden" physics channels for TLEP($\gamma\gamma$)

	Reaction	Remarks	S	
-	$\gamma \gamma ightarrow H, h ightarrow bb$	SM/MSSM Higgs, $M_{H,h} < 160 \text{ GeV}$	-)	
	$\gamma\gamma \to H \to WW(^*)$	SM Higgs, $140 < M_H < 190$ GeV		
	$\gamma\gamma ightarrow H ightarrow ZZ(^*)$	SM Higgs, $180 < M_H < 350$ GeV		
	$\gamma\gamma ightarrow H ightarrow \gamma\gamma$	SM Higgs, $120 < M_H < 160$ GeV		
	$\gamma\gamma \to H \to t\bar{t}$	SM Higgs, $M_H > 350$ GeV		
	$\gamma\gamma ightarrow H, A ightarrow bb$	MSSM heavy Higgs, interm. $\tan \beta$		
	$\gamma\gamma \to \tilde{f}\tilde{f}, \; \tilde{\chi}_i^+\tilde{\chi}_i^-$	large cross sections		
	$\gamma\gamma ightarrow ilde{g} ilde{g}$	measurable cross sections		
	$\gamma\gamma \rightarrow H^+H^-$	large cross sections	7 5051	
	$\gamma\gamma ightarrow S[ilde{t} ilde{t}]$	$ ilde{t}\overline{ ilde{t}}$ stoponium		
	$e\gamma ightarrow ilde{e}^- ilde{\chi}_1^0$	$M_{\tilde{e}^{}} < 0.9 \times 2E_0 - M_{\tilde{\chi}_1^0}$)	
-	$\gamma\gamma \rightarrow \gamma\gamma$	non-commutative theories	- <u>-</u>	
	$e\gamma ightarrow eG$	extra dimensions		
	$\gamma\gamma ightarrow \phi_{\pm}$	Radions	DOINI	
	$e\gamma ightarrow ilde{e} ilde{G}$	superlight gravitions	<u> </u>	
-	$\gamma \gamma \rightarrow W^+ W^-$	anom. W inter., extra dimensions		
	$e\gamma \rightarrow W^- \nu_e$	anom. W couplings		
	$\gamma\gamma \to 4W/(Z)$	WW scatt., quartic anom. W,Z		
	$\gamma\gamma \rightarrow tt$	anomalous top quark interactions	ton	
	$e\gamma ightarrow tb u_e$	anomalous Wtb coupling	_ j top	
-	$\gamma \gamma \rightarrow \text{hadrons}$	total $\gamma\gamma$ cross section		
	$e\gamma \rightarrow e^- X, \nu_e X$	NC and CC structure functions		
	$\gamma g ightarrow q ar q, \ c ar c$	gluon in the photon		
	$\gamma \gamma \rightarrow J/\psi J/\psi$	QCD Pomeron	<u> </u>	

"Golden" physics channels for a $\gamma\gamma$ collider

QCD: $\gamma \gamma vs. e^+e^-$ collisions

Hadron production cross section versus sqrt(s):

■ At \sqrt{s} ~300 GeV, $\gamma\gamma$ x-secions are ~5·10⁴ times higher: $\sigma(\gamma\gamma \rightarrow hadrons)$ ~ 5 µb $\sigma(ee \rightarrow hadrons)$ ~ 0.1 nb Hadron yields "just" ~2 orders of magnitude higher, taking into account \mathscr{L}_{eff} ~ 10⁻⁽²⁻³⁾ reduction penalty

QCD at TLEP(γγ)

• Leading QCD contributions in $\gamma \gamma$ collisions:

σ_{tot}(γγ), (di)jets, resonances, ch.hadrons, heavy-Q,... via e[±] untagged
 Photon QED&QCD struct.functions: quasireal/virtual γ via single/double tags

BFKL dynamics via $\gamma\gamma \rightarrow \rho\rho$, J/ ϕ , J/ ϕ , YY:

6th TLEP Workshop, CERN, oct. 2013

Anomalous couplings at TLEP($\gamma\gamma$)

^{6&}lt;sup>th</sup> TLEP Workshop, CERN, oct. 2013

Anomalous e.m. τ moments at TLEP($\gamma\gamma$)

- Magnetic moment of tau-lepton: $a_{\tau} = 1.17734(2)e-4$ (QED) Current LEP bounds: $-0.052 < a_{\tau} < 0.013$
- Electric dipole-moment of tau-lepton: $|d_{\tau}| < 10^{-34}$ e cm Current LEP (also BELLE) limit: $|d_{\tau}| < 3.1 \cdot 10^{-16}$ e cm

Two-photon di-tau at CLIC (or TLEP) at 0.5 TeV, 2.10³⁴ cm⁻²s⁻¹

Other new processes for TLEP(γγ)

• Observation of $\gamma\gamma \rightarrow H(bb)$?

[DdE & Lansberg, PRD 81 (2010) 014004]

Produced in $pp(\gamma\gamma)$ at LHC (not visible due to PU):

System	$\sqrt{s_{NN}}$ (TeV)	$\sigma(\gamma\gamma \to H)$ $H \text{ total}$	elastic (pb) I	$[m_H = 120 \text{ GeV}/c^2]$ $H \to b\bar{b}$
рр	14	0.18 · 10	-3	$0.13 \cdot 10^{-3}$
System	(cm	\mathcal{L}_{AB} Δt $^{-2} \mathrm{s}^{-1}$) (s)	$\langle N_{\rm pileup} \rangle$	N_{Higgs} total $(H \to b\bar{b})$
pp (14 Te	eV) 1	.0 ³⁴ 10 ⁷	25	77 (55)

TLEP: $\mathscr{L}_{eff}(\gamma\gamma)$ +no-PU could allow for observation

• Observation of light-by-light scattering $\gamma\gamma \rightarrow \gamma\gamma$?

[DdE & Silveira PRL111 (2013) 080405]

Observable at the LHC for $m_{\gamma\gamma}$ >5 GeV in Pb-Pb mode (Z⁴-enhanced photon fluxes). Could be visible (at lower $m_{\gamma\gamma}$) at TLEP too

 $(e^+e^- \rightarrow \gamma \gamma background removed via double e^\pm-tag)$

Summary: QCD & $\gamma\gamma$ physics at TLEP

6th TLEP Workshop, CERN, oct. 2013

Backup slides

Anomalous gauge couplings at TLEP($\gamma\gamma$)

[PLC, TESLA hep-ex/01/08012]

QCD: $\gamma \gamma \rightarrow$ hadrons

High-energy photon can interact point-like (e.g. Compton scatt.) or quantum fluctuating into fermion-antifermion or vector-meson $(J=1^{-})$:

$$|\gamma\rangle = c_0 |\gamma_0\rangle + \sum_{V=\rho^0, \,\omega, \,\phi, J/\psi, \, \Upsilon} c_V |V\rangle + \sum_{q=u,d,s,c,b} c_q |q\bar{q}\rangle + \sum_{l=e, \,\mu, \,\tau} c_l |l^+ l^-\rangle$$

In practice: $\gamma \approx \gamma_0$, but γ V,qq fluctuations interact strongly and give largest contribution to $\gamma \gamma$ cross sections:

High-energy $\gamma\gamma$ collisions complementary to more "conventional" e⁺e⁻,