# Frontier Capabilities Working Group Summary

Mark Palmer

for the Study Group Conveners as presented to the U.S. HEPAP (Sep 5, 2013)





October 16, 2013



# Outline

- Study Group Structure for Accelerator-based Facilities Convener: W. Barletta
- Accelerator Capabilities Overview
  - ⇒ Summary

In advance: My acknowledgments particularly to Bill, as well as the sub-group conveners and various contributors to the Frontier Capabilities Group

# Accelerator Capabilities

- Convener: Bill Barletta (MIT, USPAS)
- Sub-groups
  - Proton Colliders
    - M. Battaglia (UCSC), M. Klute (MIT), S. Prestemon (LBNL), L. Rossi (CERN)
  - Lepton Colliders
    - M. Klute (MIT), M. Battaglia (UCSC), M. Palmer (FNAL), K. Yokoya (KEK)
  - Intensity Frontier Protons
    - J. Galambos (ORNL), M. Bai (BNL), S. Nagaitsev (FNAL)
  - Intensity Frontier Electrons and Photons
    - G. Varner (Hawaii), J. Flanagan (KEK), J. Byrd (LBNL)
  - Accelerator Technology:
    - G. Hoffstaetter (Cornell), W. Gai (ANL), M. Hogan (SLAC), V. Shiltsev (FNAL)



# ACCELERATOR-BASED FACILITY SUMMARY

# The HEP Accelerator "Big Questions"

### The Following Questions Are Inherently Long Term

- How would one build a 100 TeV scale hadron collider?
- How would one build a lepton collider at >1 TeV?
- How would one generate 10 MW of proton beam power?
- Can multi-MW targets survive? If so, for how long?
- Can plasma-based accelerators achieve energies & luminosities relevant to HEP?
- Can accelerators be made 10x cheaper per GeV? Per MW?

# Energy Frontier Proton Colliders I

#### The Key Questions

- What luminosity is possible for the LHC?
  - Strategies for increased integrated luminosity
  - Avoid impaired data and degradation of the detectors
- What energy can be achieved in the LHC tunnel?
- What is the future for the Energy Frontier Hadron Colliders beyond the LHC?
  - What are the challenges of a 100 TeV collider?
- What is the accelerator R&D roadmap for LHC and post-LHC capabilities?

#### The Near-Term Priorities – Full Exploitation of the LHC

- Continue a strong LHC Accelerator R&D Program 

   → Hi Lumi LHC Construction Project
- Develop the technologies required for a High Energy LHC 
   ⇒ Achieve Engineering Readiness
  - Next generation Nb<sub>3</sub>Sn magnets (~15T scale)
  - Advanced beam control technology
  - ⇒ Represents the most critical near-/mid-term development effort for higher energy hadron colliders
- However, the high energy reach of the LHC is limited...
  - without magnet engineering materials beyond Nb<sub>3</sub>Sn (high temperature SC development being pursued)
  - with challenges in managing synchrotron radiation
  - ⇒ Focused engineering is not a substitute for innovative R&D



# **Energy Frontier Proton Colliders II**

#### **Long-Term Options Beyond the LHC**

- Extensive interest was expressed at Snowmass in a 100 TeV pp collider
  - US-led VLHC study (~2001) still valid ⇒ updated with a Snowmass whitepaper
  - Interest at CERN (coupled to TLEP study)
  - US participation in a new design study would help inform plans for future technology R&D
     ⇒ Participation in such a study is recommended

#### Accelerator R&D Roadmap: LHC Upgrades ⇒ post-LHC

- Advanced magnets
  - New engineering conductors (e.g., small filament HTS)
  - Improved temperature margin, stress management techniques, magnet protection, and structural

materials

- Beam dynamics
  - Effects of marginal synchrotron radiation damping
  - Beam physics of the injection chain
  - Control of beam halo
  - Noise & ground motion effects
- Machine protection & beam abort dumps (multi-GJ beams)
- Interaction Region design & technology options

NOTE: Strong technology overlap with muon / intensity machines



Energy Frontier Lepton & Photon Colliders I

#### The Key Questions

Can ILC & CLIC designs be improved using new technologies?

- Can they be constructed in stages? what is a staging plan?
- What would be the parameters of a Higgs factory as a first stage?
- Higgs factories
  - Could a Higgs factory be constructed in the LHC tunnel?
  - What would be parameters of a photon collider Higgs factory
  - Could one build a μ+μ- collider as a Higgs factory?
- Could one design a multi-TeV μ+μ- collider?
- What is the accelerator R&D roadmap?

#### The Japanese Initiative – Proposal to Host the ILC

- The Japanese initiative is welcomed
- With the release of the TDR by the ILC Global Design Effort, the ILC technical design is ready for a decision
  - Major US contributions to and leadership roles in machine physics & technology:
     SRF, high power targetry (e+ source), beam delivery, damping rings, and beam dynamics
  - Importance of an upgrade path to higher energy (> 500 GeV) & luminosity (> 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>)
    has been emphasized
- The US accelerator community is capable of contributing...

  As supported by the physics case and as part of a balanced program

  The US can offer an experienced & ready team

ge?

Excitement & boundary condition

The driven by the Hiss discovery are driven by the Hiss services are driven by the Hiss

## **Energy Frontier Lepton & Photon Colliders II**

HF Concepts span

a broad range of

technical readiness

#### **Alternative Higgs Factory Approaches**

- e<sup>+</sup>e<sup>-</sup> ring in a very large tunnel (50-100km circumference)
  - Significant extrapolation, but from large experience base
  - Energy reach & luminosity are very strongly coupled
    - Largest luminosity at Z peak, falling rapidly √s increases
  - Tunnel could support a 100 TeV proton collider option
- Muon collider Feasibility assessment underway
  - Options for Higgs Factory (s-channel H production) ⇒ 10 TeV collider on Fermilab site
- Photon collider
  - Options for add-on to a linear collider and for a standalone facility presented
  - Builds on US expertise in high power lasers (overlap with laser wakefield accelerator needs)

#### Accelerator R&D Roadmap: Research For a Compact Multi-TeV Collider

Motivated by lower cost, smaller footprint, and higher energy capability

- Support the integrated US R&D program toward demonstrating muon collider feasibility (MAP)
  - Enable completion of the feasibility assessment near the end of this decade
  - Closely connected with intensity frontier & intense neutrino sources
  - Strong magnet synergies with LHC energy upgrades
- Stay involved in high gradient, warm linac approach (CLIC)
  - Practical energy reach: wakefield control, accelerating gradient
  - Industrialization path to be developed
- Continue R&D in wakefield accelerators (plasmas & dielectric)
  - Fruitful physics programs with high intellectual content
  - Feasibility issues: Positron acceleration, multi-stage acceleration, control of beam quality, plasma instabilities at 10's of kHz rep rate Maximizing RF Efficiency is Crucial!
  - All variants require an integrated proof-of-principle test



Muon Collider Concept

on Fermilab Site



# High Intensity Proton Sources I

#### The Key Questions

- 1) What secondary beams are needed for IF experiments?
- 2) What proton beams are needed to generate these?
  - > 1 MW , flexible timing structure
- 3) Can these be made by existing machines?
- 4) What new facilities are needed to deliver 1)?
- 5) What accelerator / target R&D is needed to realize 4?

#### Approach to Setting Priorities – Intensity Frontier ⇒ Diversity

- Survey of anticipated particle physics requirements for secondary beams (i.e. neutrino, kaon, muon, neutron,...)
  - 19 secondary beam requests filled out by experiment advocates
- Derived primary proton beam characteristics
- Common characteristics of required beams
  - High average power (> 1 MW)
  - Flexible time structure
- Compared with existing proton beam characteristics
  - 20 existing proton beam lines + 14 planned upgrades
- ⇒ Conclusion: Next generation of intensity frontier experiments will require proton beam intensities & timing structures beyond the capabilities of any existing accelerators

## High Intensity Proton Sources II

Project X – Can Provide a World-Leading Facility for Intensity Frontier

Research

- Based on a modern multi-MW SCRF proton linac
  - Flexible "on-demand" beam structure
- Could serve multiple experiments over broad energy range
  - Supports 0.25 120 GeV
- Platform for future muon accelerator facilities: IF/v Factory (NuMAX) & EF/Muon Collider
- Complete, integrated concept Reference Design Report
  - arXiv:1306.5022
- R&D program underway to mitigate risks in Reference Design
  - Undertaken by 12 U.S. & 4 Indian laboratories and universities
- ⇒ Construction could be initiated in the last half of this decade

#### Capabilities with Narrower Experimental Scope

- DAEδALUS: Decay At Rest anti-neutrinos short baseline ν oscillations
  - 3 multi-MW H₂<sup>+</sup> cyclotrons/target stations located ~2-20km from experiment large hydrogenous detector
  - First stage: IsoDAR compact cyclotron 15 m from Kamland
  - International collaboration with strong industry connection
- nuSTORM: Neutrinos from STORed Muons
  - Supports sterile neutrino & neutrino cross-section experimental program using existing accelerator technology - also muon accelerator R&D
  - Muon storage ring sends well-characterized beams to near & far detectors at 50 m & 1900 m
  - Potential first step towards a long baseline neutrino factory capability



## High Intensity Proton Sources III

#### **Intensity Frontier Accelerator R&D Issues**

- High quality, high current injection systems
  - Low emittance, high current ion sources
  - Effective beam chopping
  - Space charge control
- SCRF acceleration (Project X, muons)
- Multi-MW cyclotrons DAEδALUS
- Radiation resistant magnets
- Very high efficiency extraction
- & Understanding and controlling beam loss
  - Efficient collimation
  - Beam dynamics simulations of halo generation
  - Large-dynamic-range instrumentation

#### High Power Targetry – A Particularly Challenging R&D Issue

- Displacements & gas production are the main underlying damage mechanisms
  - Particulars depend on primary beam characteristics, material, ...
  - Can not simply scale from nuclear power experience
- Targets are difficult to simulate
  - Radiation effects need validating (inhomogeneous, time-varying)
  - Thermo-mechanical models complex
  - Poorly understood failure criteria (classical limits may be too conservative)
- Need controlled, instrumented in-beam tests & Need a source before you can test materials
  - Takes a long time to build up data (accelerated testing)





Requires a structured R&D program ⇒ International RADIATE collaboration has been formed

# High Intensity Electron and Photon Beams I

#### The Key Questions

- What additional accelerator capabilities at heavy flavor factories are required to realize the full range of physics opportunities?
- What new or existing accelerator-based facilities provide opportunities for dark sector / axion searches ?
- What are new physics opportunities using high power electron and photon physics?
- What accelerator and laser R&D is required to realize the physics opportunities in these areas?

#### Capabilities Desired For Heavy Flavor Factories

- Super B-Factory (SuperKEKB):
  - Important US contributions to design by both labs & universities
  - Participation in commissioning & machine studies desirable
  - Luminosity upgrades (needs physics case)
  - Polarized beams (refine physics case)
    - Technical feasibility
- Tau-charm Factory beyond BEPC-II
  - What kind of facility would be interesting? (needs physics case)
  - What luminosity is needed? Is polarization necessary?

# Factory machines require BOTH high intensity & low emittance beams



## High Intensity Electron and Photon Beams II

#### **Opportunities for HEP Using FEL Facilities**

- "Flashlight through a wall" experiments using high-intensity photon beams in strong magnetic fields
  - JLab/MIT: Dark Light axion search
- · Search parameters are unconstrained
  - Use existing facilities
- keV level searches can use X-ray FELs
- More speculative: Generating low emittance muon beams from intense positron beams

# Accelerator Development Roadmap for e<sup>+</sup>e<sup>-</sup> Intensity Frontier Machines:

#### Exploit synergy with light sources

- Beam stability & control
  - Examples: Electron cloud & fast ion instabilities
- · Coherent Synchrotron Radiation issues with short bunches
- High-rate injection
  - High top-up rate to compensate for low lifetimes
  - Timing jitter, and attendant energy jitter
- Low-emittance beam issues
- Beam instrumentation

Presents an ongoing opportunity for collaboration across a broad accelerator community

### Accelerator Technology Test Beds I

#### The Charge

- Identify broad range of test capabilities existing or needed
- Category 1: Provides testing beam physics / accelerator components to manage technical risks in planned projects
- Category 2: Integrates proof-of-practicality tests
- Category 3: Provides tests of physics feasibility of concepts / components

#### **Identified Capabilities**

- 35 existing facilities were identified
  - Beam / no-beam
  - US & overseas

| Hadron Colliders: LHC Lumi & Energy Upgrades, VLHC |                             |                      |  |  |
|----------------------------------------------------|-----------------------------|----------------------|--|--|
| Technical Challenges                               | Existing Capabilities       | Planned Capabilities |  |  |
| High performance SC wire                           | Critical industry couplings |                      |  |  |
| High Field SC magnets                              | LBNL, FNAL, BNL, CERN       |                      |  |  |
| SR and photon stops                                | Electron storage rings      |                      |  |  |
| Collimation                                        | LHC, RHIC, FNAL-MI          |                      |  |  |
| Injectors - SCRF                                   | SNS (limited)               | PXIE@FNAL            |  |  |
| Injectors – Space charge                           | FNAL-Booster, AGS, PS       | ASTA@FNAL            |  |  |
| Beam cooling (optical, coherent)                   |                             | ASTA@FNAL, RHIC Cool |  |  |

#### Injector studies need new, dedicated facilities

| Lepton Colliders: ILC and Beyond                            |                             |                                 |  |  |
|-------------------------------------------------------------|-----------------------------|---------------------------------|--|--|
| Risk Reduction Areas                                        | Existing Capabilities       | Planned Capabilities            |  |  |
| ILC: SRF-system no beam                                     | JLab, Cornell, Industry     |                                 |  |  |
| ILC: SRF system with beam                                   | DESY, KEK, Cornell, LLNL    | ASTA@FNAL                       |  |  |
| ILC: FF, Damping Rings, e+ Production                       | KEK, Cornell, LLNL          |                                 |  |  |
| Practicality/Feasibility Tests                              | Existing Capabilities       | Planned Capabilities            |  |  |
| CLIC NCRF 2-beam                                            | CERN                        |                                 |  |  |
| Muon Colliders – technical components                       | MuCool Test Area (MTA@FNAL) |                                 |  |  |
| Muon Colliders – 4D/6D ionization Cooling                   | MICE@RAL                    | nuSTORM                         |  |  |
| Wakefield accelerators – acceleration demo/staging          | SLAC, LBNL, ANL             | Upgrades to existing facilities |  |  |
| Wakefield accelerators – luminosity / beam control          |                             | Needs integrated testbed        |  |  |
| Energy reach beyond the ILC will need new test capabilities |                             |                                 |  |  |

#### Intensity Frontier Accelerators: Includes Project X, DAEδALUS, Neutrino Factory

| Technical Challenges                   | Existing Capabilities  | Planned Capabilities |
|----------------------------------------|------------------------|----------------------|
| Project X: H- source & chopping        | SNS                    | PXIE@FNAL            |
| Project X: CW SC RF (low beta)         | Atlas@ANL              | PXIE@FNAL            |
| Project X: Pulsed SC RF, space charge  |                        | ASTA@FNAL            |
| DAEδALUS: H <sub>2</sub> + source      | LNS Catania            |                      |
| DAEδALUS: Multi-MW cyclotrons          | PSI, RIKEN, ORNL, Best |                      |
| Neutrino Factory                       | See Muon Collider      |                      |
| Instabilities, collimation, extraction | FNAL, RHIC             |                      |
| Dedicated high power targetry          |                        | Critical Need        |

#### A new generation of IF machines needs new test facilities

#### Intensity Frontier Accelerators: Flavor Factories and Electron-Ion Colliders

| Technical Challenges                          | Existing Capabilities   | Planned Capabilities |
|-----------------------------------------------|-------------------------|----------------------|
| Beam instabilities, Interaction region optics | Existing Rings          |                      |
| IP designs, collimation                       | BNL, CERN               |                      |
| Non-standard beam-beam                        |                         | Needed               |
| Intense polarized e⁻ source                   | JLab, BNL, Cornell      |                      |
| CW SRF (β = 1)                                | Cornell, JLab, BNL, KEK | CERN                 |
| Heavy ion sources                             | MSU, LBNL               |                      |

Good test facility basis for technical design of HEP machines



# Accelerator Capabilities: Summary

- A broad range of accelerator-based capabilities has been reviewed
- Key goals for the US Planning Process:
  - Fully exploit LHC capabilities and its upgrade path
    - ⇒ Complete its physics program
    - ⇒ Support the R&D for the next steps
  - The Japanese initiative to host a linear collider as a Higgs Factory is welcome
    - ⇒ The US accelerator community is capable of making significant contributions
    - ⇒ A clear upgrade path to higher energy and luminosity is necessary
  - The next generation of Intensity Frontier experiments require proton intensities and timing structures which are beyond current capabilities
    - ⇒ Project X can provide a world-leading facility to satisfy these needs
    - ⇒ Facilities with more narrowly defined scope may also have a role to play
  - Intensity Frontier colliders and photon sources have strong synergies with other parts of the accelerator community (eg, light sources)
  - Support for key R&D is required
    - ⇒ Participate in planning for a 100 TeV Collider
    - ⇒ Continue the R&D efforts toward a more compact multi-TeV lepton collider capability: Muon Collider, LC technologies (warm RF, wakefield)
    - ⇒ Dedicated test facilities will be required to develop future HEP capabilities





# A FEW COMMENTS ON TLEP: MY VIEWS ONLY!

# Some Personal Comments

- The TLEP concept was generally viewed as very interesting, but still in the preliminary stages
  - Considerable interest among HEP physicists, based on the potential cost and performance points
  - The coupling to an Energy Frontier pp machine lends this option considerable weight
  - There is a strong desire to let the Japanese Initiative proceed and then the situation can be re-evaluated
  - Moving towards a large tunnel should not be allowed to interfere with taking full advantage of the LHC
  - A full CDR is required
- Thus more detailed consideration after seeing how events of the next few years unfold, and while a full CDR is developed, seems reasonable...



# **THANK YOU**