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Beam-Beam studies for TLEP
(and update on TMCI)

S. White and N. Mounet

Thanks to E. Metral, R. Tomas and F. Zimmermann

6th TLEP workshop - CERN
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Beam parameters

TELP Z TLEP W TLEP H TLEP t TLEP t B

E [GeV] 45 80 120 175 175

N [e/bunch] 4.0e11 1.0e11 3.7e11 0.88e11 7.0e11

ε
x/y

 [nm] 29.2/0.06 3.3/0.017 7.5/0.015 2.0/0.002 16.0/0.016

β
x/y

 [m] 0.5/1.0e-3 0.2/1.0e-3 0.5/1.0e-3 1.0/1.0e-3 1.0/1.0e-3

τ
||
 [turns] 1319 242 72 23 23

ξ
x/y

/IP 0.068 0.086 0.094 0.057 0.057

L/IP [cm2.s-1] 5.9e35 1.6e35 5.1e34 1.3e34 1.0e34

→ Beam parameters relevant for the beam-beam simulations

→ Assume 100km circumference in all cases

→ By design there are 4 IPs: the total beam-beam parameter scales accordingly

● Latest beam parameters provided by F. Zimmermann
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Model

IP1

IP2

IP3

IP4

Linear map
+RF

+damping

Beam-Beam
+beamstrahlung

● Strong-strong beam-beam model based on the
code BeamBeam3D by J. Qiang

● Beam-beam module fully benchmarked
against data and theory

● Allows to include impedance effects
benchmarked with HEADTAIL and theory

● Track 2 bunches per beam: neglecting long-range
interactions this covers the full picture

● Recently added synchrotron radiation (damping
and beamstrahlung as relevant for TLEP)

● Benchmarking done against existing code and theory
(will be presented in the following slides)

● Luminosity is computed in 3D taking into account the 
focusing effect of the beam-beam interaction

→ Only non linear elements are
the beam-beam interactions

→ Arcs are modeled by linear 
transfer maps

→ Optics are the same in all IPs

B1 B2
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Synchrotron radiation

nγ=
5√3
6

α γ
ρ Δ s

P (n)=
nγ
n e−nγ

n !

P c (ϵ/ϵc)=
3
5π∫0

ϵ /ϵc

∫ϵ /ϵc

∞

K 5 /3( x)dx

● The average number of photons emitted for a given bending radius is:

● Photon emission follows a Poisson distribution:

● Cumulative distribution of energy probability law:

● Photon critical energy: ϵc=
3ℏ γ3 c
2ρ

Pc (ϵ/ϵc≪1)≈1.23( ϵ
ϵc

)
(1 /3)

P c (ϵ/ϵc≫1)≈1−0.24
e
− ϵ

ϵc

√ ϵ
ϵc

with and
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Photon emission

● Each time a kick is given to a particle ρ and ϵ
c
 are computed accordingly

● The number of photons emitted over the interaction length is selected at random following 
P(n)

● The energy of each photon is then computed by picking a random number between 0 and 1
and inverting P

c
(ϵ/ϵ

c
)

● For small and large energies analytical approximations are used. For intermediate energies 
a look-up table of the exact numerical integration is used: 0.02 < ϵ/ϵ

c
 < 5.0

P
c
(ϵ/ϵ

c
): exact in blue 

approximations in red

Convergence at constant ρ
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Comparison with GUINEA-PIG

● Test case with round beams at the IP. Photon energy distribution for 2M macro-particles,
 13 slices and a grid of 128x128 after a single collision

→ Photons energy distribution and average energy in good agreement

→ Some differences (~2%) at low energy – agreement of 1% or better at higher energies

175 GeV
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Dynamic effects – single IP

● Depending on the working point strong beam-beam effects can distort the optics

→ Linear dynamic effects: see Chao's Handbook, 
condition for stability (0→ 0.5):

→ Large beam-beam parameters requires to 
operate close to 0.5 or 1.0 

→ Very strong dynamic effects

ξ0<
1
2π
cot
2 πQ0
2Stable

Unstable
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Multiple IPs

● Past studies have shown that breaking the collision symmetry can lead to excitation of
additional resonances and different β-functions, i.e luminosities, at the different IPs
● For a symmetric case it is the phase advance between IPs that determines dynamic effects

∆φ~0.02

~5% less
luminosity in IP1

→ Keeping collision symmetry is important: excellent optics control
→ Dynamic effects can be violent: in case of problems can be mitigated by a proper choice 
of the working point – here β-functions after the collision in IP1

TLEP t: ξ~0.023
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Choice of the working point

● Assumptions – final values should be determined by detailed study:
→ The footprint should not overlap half integer and integer resonances
→ Resonances of order 3 may be crossed (to be checked case by case)
→ Phase advance between IPs: 0.0 < ∆φ < 0.25: integer part multiple of 2
→ Dynamic effects should not be too strong:  ∆φ not too small
→ Avoid the coupling resonance Qx – Qy = 0.0

● As a start take 4x LEP as integer part (for TLEPH) – two possibilities for fractional part:

ξ∼0.4 – TLEP H

→ Below 0.5 smaller footprint but strong 
optics distortion

→ Above 0.5 larger footprint but very 
little optics distortion
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TLEP t

Design
Simulated 

Q>0.5
Simulated 

Q<0.5

E [GeV] 175 175 175

N [e/bunch] 0.88e11 0.88e11 0.88e11

ε
x/y

 [nm] 2.0/0.002 2.1/0.0023 2.25/0.0025

β
x/y

 [m] 1.0/1.0e-3 1.0/1.0e-3 1.0/1.0e-3

σ
s
 [mm] (BS) 0.77 0.8 0.84

σ
δp/p

 [%] (BS) 0.23 0.24 0.25

τ
||
 [turns] 23 23 23

ξ
x/y

/IP 0.057/0.057 0.056/0.047 0.051/0.053

L/IP [cm2.s-1] 1.3e34 1.38e34 1.75e34

→ The simulated cases correspond to the 
footprints previously shown

→ Better than design luminosity achieved 
in both cases

→ Dynamic effects boost the peak luminosity
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TLEP t B

Design Simulated 
Q>0.5

Simulated 
Q<0.5

E [GeV] 175 175 175

N [e/bunch] 7.0e11 7.0e11 7.0e11

ε
x/y

 [nm] 16.0/0.016 16.7/0.035 18.0/0.035

β
x/y

 [m] 1.0/1.0e-3 0.96/1.03e-3 0.67/1.2e-3

σ
s
 [mm] (BS) 1.95 1.9 2.05

σ
δp/p

 [%] (BS) 0.29 0.32 0.34

τ
||
 [turns] 23 23 23

ξ
x/y

/IP 0.057/0.057 0.055/0.04 0.051/0.050

L/IP [cm2.s-1] 1.04e34 0.8e34 1.0e34

→ Same tunes as for TLEP t simulations

→ Design luminosity barely reached for Q<0.5

→ This scenario looks less promising than TLEP t:
vertical blow-up much stronger
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TLEP H

Design Simulated 
Q<0.5

E [GeV] 120 120

N [e/bunch] 3.7e11 3.0e11

ε
x/y

 [nm] 7.5/0.015 8.8/0.019

β
x/y

 [m] 0.5/1.0e-3 1.0/1.0e-3

σ
s
 [mm] (BS) 2.11 1.65

σ
δp/p

 [%] (BS) 0.3 0.24

τ
||
 [turns] 72 72

ξ
x/y

/IP 0.094/0.094 0.065/0.054

L/IP [cm2.s-1] 5.08e34 3.5e34

→ TLEPH much more difficult: try to achieve twice the beam-beam parameter with 3 times
damping time: emittance blow-up of a factor 5 in few turns with nominal parameters
→ Reduced beam-beam parameter: relaxed β

x
 and bunch intensity, keep current constant

→ Making use of dynamic effects ~70% of design achieved: could be pushed further but
then lifetime becomes an issue
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TLEP W

Design Simulated 
Q<0.5

E [GeV] 80 80

N [e/bunch] 1.0e11 1.0e11

ε
x/y

 [nm] 3.3/0.017 4.1/0.022

β
x/y

 [m] 0.2/1.0e-3 0.5/1.0e-3

σ
s
 [mm] (BS) 1.98 1.6

σ
δp/p

 [%] (BS) 0.2 0.165

τ
||
 [turns] 242 242

ξ
x/y

/IP 0.086/0.086 0.068/0.051

L/IP [cm2.s-1] 1.64e35 1.15e35

→ Again with design parameters strong emittance blow-up: reduced beam-beam parameter, 
relaxed β

x

→ Making use of dynamic effects ~70% of design achieved
→ Q>0.5: luminosity well below design
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TLEP Z

Design
Simulated 

Q>0.5

E [GeV] 45 45

N [e/bunch] 4.0e11 1.5e11

ε
x/y

 [nm] 29.2/0.06 29.7/0.09

β
x/y

 [m] 0.5/1.0e-3 0.5/1.0e-3

σ
s
 [mm] (BS) 2.93 1.7

σ
δp/p

 [%] (BS) 0.13 0.075

τ
||
 [turns] 1319 1319

ξ
x/y

/IP 0.068/0.068 0.029/0.024

L/IP [cm2.s-1] 5.86e35 2.1e35

→ LEP at 45.6 GeV achieved ξ
x/y

 ~ 0.03/0.044 per IP with a damping time of ~360 turns

→ Can TLEP do better with ~4x longer damping time?
→ Had to significantly reduce the beam-beam parameter to achieve reasonable emittance
blow-up
→ In this case ~36% of design reached but requires 20000 bunches (probably not 
realistic – electron cloud?)
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Lifetimes

● Cases with strong beamstrahlung: TLEP t and TLEP H. Does not include burn off. 
Collimation performed at each IP with 14σ transverse and η=0.02

TLEP t

→ TLEP H: bunch intensity and β
x
 were

already relaxed to reduce emittance blow-up.
simulated lifetime 41 minutes

→ TLEP t: with nominal parameters lifetime
barely above 1 minute. Relaxing β

x
 to 2.0m

allows to increase it to 15 minutes with a
luminosity reduce to 1.17e34 (~90% of design)

TLEP H
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Performance with 2IPs

● Can we scale the beam-beam parameter, i.e luminosity per IP, with the number of IPs?
Analytical lifetime estimate by Telnov:

u=η
α σ xσ s

3 γ re
2 N p

τ=
20
n IP

√6 π r e γ

α2ησ s

2π R
c
u3/2 eu with

→ Much stronger dependency on the bunch intensity than number of IPs. The equilibrium
bunch length and β also vary with ξ. Example of TLEP t (∆σ

s
 included assume no dynamic β):

τ = 22

ξ 
0
= 0.218

ξ 
0
= 0.112

→ Reducing the number of IPs will degrade the total luminosity performance
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Reduced energy acceptance

β*=1.5m

β*=2.8m

τ = 22
τ = 22

N=0.9e11

N=0.67e11

Tracking

→ Reducing the energy acceptance
will significantly degrade the beam 
lifetime

→ Lifetime can be recovered by either 
increasing β

x
 or decreasing the bunch

intensity

→ For luminosity performance  increasing
β

x
 is clearly better
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Summary

TELP Z TLEP W TLEP H TLEP t

E [GeV] 45 80 120 175

N [e/bunch] 1.5e11 1.0e11 3.0e11 0.88e11

# bunches 20000 3200 206 160

ε
x/y

 [nm] 29.7/0.09 4.1/0.022 8.8/0.019 2.17/0.00217

β
x/y

 [m] init. 0.5/1.0e-3 0.5/1.0e-3 1.0/1.0e-3 2.0/1.0e-3

β
x/y

 [m] dist. 0.47/1.0e-3 0.36/1.1e-3 0.75/1.1e-3 1.6/0.85e-3

ξ
x/y

/IP dist. 0.029/0.024 0.068/0.051 0.065/0.054 0.055/0.036

L/IP [cm2.s-1] 2.1e35 1.15e35 3.5e34 1.17e34

L/IP [% design] 36 70 69 89

τ
BS

 [min], η=0.02 - - ~41 ~15

→ Good performance achieved in all cases except TLEP Z ( only 36% of design)
→ Dynamic effects are essential to reach these performance: choice of working point
→ TLEP H and TLEP t are limited by lifetime not beam-beam
→ Reducing the number of IPs would result in significant loss in total luminosity
→ Reducing the energy acceptance is possible if β

x
 is increased: lower luminosity

→ In case of strong hourglass (TLEP Z) we could try traveling focus to recover some luminosity
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Impedance model: resistive wall
2A

x
=9 cm

Elliptic shape

2A
y
=3 cm

● Tungsten (σ = 1.85 107 S/m) photon absorbers, intercepting synchrotron radiation from 
dipoles (elliptic with reduced aperture in horizontal). Transitions between vacuum 
pipe and photon absorbers cross-sections: imp. approximated using K. Yokoya's 
formula for round tapers [CERN SL/90-88]:

● Resistive-wall impedances considered: 

● Aluminum (σ = 3.7 107 S/m) main vacuum pipe

Synchrotron radiation

ρ

Photon absorber

2ax

l

Hor. aperture ax 

depends on 
dipole length ld

Simple model 
neglecting drift 
and straight sections
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● Broad-band resonator estimates (Q=1, f
r
=6 GHz):

● RF cavities: from R. Calaga's PhD (BNL-SERL cavity, 700 MHz)

 
→ ”fit” low-frequency part by constant inductive impedance of 3 kΩ/m, 
multiplied by 600 (number of cavities).

Impedance model: RF cavities

Courtesy R. 
Calaga

● All impedances weighted by approximative average beta function ~2R/Q:
→ Assume 4xLEP for TLEPH (312,392)
→ The tunes range from (104,130) for TLEPZ to (624,784) for TLEPt due to
the different FODO cells length: strong impact on the effect of impedance
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Dipolar wake function

● Transverse dipolar wake function in vertical: relative contributions for different 
vertical apertures of the vacuum pipe and different dipole lengths

→ Increase of vertical aperture has 
a clear beneficial effect

→ Length of dipoles has a smaller 
impact

→ TMCI will be estimated for these 
three cases

A
y
=1.5 

cm,
ld=11 m

A
y
=3 cm,

ld=11 m

A
y
=3 cm,

 ld=5.5 m
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Synchro-betatron effects

● It was shown by F. Ruggiero that in case of large synchrotron tune one has to consider 
synchro-betatron resonances (Q

β
=Q

s
) and eventual coupling between modes 0 or -1 and

reflexions of the synchrotron sidebands:

Q
s
=0.1

→ Good qualitative agreement, difference may be explained by impedance model
→ Consider enough sidebands to cover a full integer

From F. Ruggiero's PhD
thesis
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Synchrotron tune

● When 0.5/Q
s
=integer all the reflexions line up and we get the clean picture shown in the

previous slide. Example for Q
s
~0.1:

→ The TMCI threshold approximately scales with the synchrotron tune

→ When 0.5/Q
s
 is not an integer more synchro-betatron resonances are observed

→ It is not clear up to which order these resonances are harmful: would require dedicated 
study, for now stick with design values

Q
s
=0.1 Q

s
=0.09
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Quadrupolar wake

Dipolar wake only

Dipolar+quadrupolar Dipolar+quadrupolar
+vertical aperture x2

2Q
y
=nQ

s

→ Use an exemple with Q
s
=0.125

→ Dipolar wake only: resonance of type Q
y
=nQ

s
 

observed
→ Dipolar and quadrupolar wake: additional 
resonances of type 2Q

y
=nQ

s

→ Increasing the vertical beam pipe by a factor 2 
strongly mitigates the quadrupolar resonances
→ No apparent effect from quadrupolar wake on 
TMCI threshold 
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1.5cm half vertical aperture – 11m dipoles

TLEPZ – Q
s
=0.26 TLEPW – Q

s
=0.063

TLEPH – Q
s
=0.09 TLEPt – Q

s
=0.046

Ne from simulation
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3.0cm half vertical aperture – 11m dipoles

TLEPZ – Q
s
=0.26 TLEPW – Q

s
=0.063

TLEPH – Q
s
=0.09 TLEPt – Q

s
=0.046

Ne from BB
simulation
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3.0cm half vertical aperture – 5.5m dipoles

TLEPZ – Q
s
=0.26 TLEPW – Q

s
=0.063

TLEPH – Q
s
=0.09 TLEPt – Q

s
=0.046

Ne from BB 
simulation
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Summary

● The impedance model was extended to include photo-absorber: impedance however 
dominated by the resistive wall from the beam pipe. The results presented here are 
preliminary, more detailed studies (tracking) are required for validation.

● Preliminary observations:
● Synchro-betatron resonances are important and should be avoided: additional constraint on the 

choice of the working point
● With a half vertical aperture of 1.5cm only TLEPt is below threshold
● Increasing the half vertical aperture to 3.0cm significantly improves the situation, reducing the 

dipole length and retracting the photo-absorbers further increases the threshold
● With all this taken into account only TELPZ remains as an issue (already an issue for beam-

beam, what about electron cloud? → review parameters?)
● In the previous calculations the bunch lengthening from beamstrahlung was not taken into account: 

this will slightly increase the thresholds

● Next steps: 
● Validation of the results with tracking
● Possible benefits of beam-beam tune spread, chromaticity, transverse damper, radiation damping
● Multi-bunch resistive wall instability
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