TLEP ... Lattice Design \& Beam Optics

Parameter-List on TKLEP-WEB Page !! emittance !!

	TLEP Z	TLEP W	TLEP H	TLEP \ddagger
$\mathrm{E}_{\text {beam }}[\mathrm{GeV}]$	45	80	120	175
$\mathrm{I}_{\text {total }}$ [mA]	1180	124	24	5.4
\#bunches/beam	4400	600	80	12
\#e-/beam [10 ${ }^{12}$]] 1960	200	40.8	9.0
horiz. emit. [nm]] 30.8	9.4	9.4	10
vert. emit. [nm]	0.07	0.02	0.02	0.01
$\beta * *_{x}[m]$	0.5	0.5	0.5	1
$\underline{\beta} *_{2}[\mathrm{~mm}]$	0.1	0.1	0.1	1
$\underline{\sigma *}$ [um]	124	78	68	100
$\underline{\sigma *}$ [um]	0.27	0.14	0.14	0.10
L/IP $\left[10^{32} \mathrm{~cm}^{-2 s^{-1}}\right]$	-1] 5600	1600	480	130

TLEP ... Lattice Design ... Version 1... 2

Arc: 96 standard FoDo cells \& 2 half bend cells at beginning and end length of arc: 2.8 km length of straight section: 0.45 km

TLEP ... Lattice Design

Arc: the single FoDo cell
until now ... 2 dipoles / 2 quadrupoles
to be optimised according to hardware engineering
short cell length: $\approx 30 \mathrm{~m}$
advantage: small betas small dispersion small emittance
but: realistic hardware design ?

TLEP ... Lattice Design

Arc: the single FoDo cell
phase advance: $90^{\circ} / 60^{\circ}$

to be discussed ...

90^{0} horizontally: small dispersion \& emittance
 60^{0} vertically: small beam size (β_{y}) and better orbit correction tolerance (LEP experience)

TLEP ... Lattice Design (175 GeV) not the very first steps anymore (... V9.e)

Main modifications wrt. previous versions: longer cells to achieve higher dispersion values
Text-Book like approach
still 80 km, standard FoDo structure
fill factor, robustness, easy to handle \& modify easy to understand \& optimise analytically

Choice of single cell: compared to V. 3 ... V. 6 cell length increased to $L_{\text {cell }}=50 \mathrm{~m}$
equilibrium emittance

$$
\varepsilon=\left(\frac{\delta p}{p}\right)^{2}\left(\gamma D^{2}+2 \alpha D D^{\prime}+\beta D^{\prime 2}\right)
$$

scaling of dispersion in a FoDo $\quad \hat{D}=\frac{1^{2}}{\rho} \frac{\left(1+\frac{1}{2} \sin \frac{\psi_{\text {cell }}}{2}\right)}{\sin ^{2} \frac{\psi_{\text {cell }}}{2}}$

$\mathrm{L}_{\text {cell }}=50 \mathrm{~m}$
Dipole: $\quad N_{\text {dipole }}=2932$

$$
L_{\text {dipole }}=21.3 \mathrm{~m}
$$

due to techn. reasons: $2 * 11 \mathrm{~m}$ bending angle $=2.14 \mathrm{mrad}$

$$
B_{0}=580 \Gamma
$$

Quadrupole (arc):

$$
\begin{aligned}
& L_{\text {quadrupole }}=1.5 \mathrm{~m} \\
& k=3.55 * 10^{-2} \mathrm{~m}^{-2} \\
& g=20.7 \mathrm{~T} / \mathrm{m} \\
& \text { aperture: } r_{0}=30 \sigma=11 \mathrm{~mm} \\
& B_{\text {tip }}=0.23 \mathrm{~T}
\end{aligned}
$$

$$
\beta \approx 100 \mathrm{~m}, D_{x}=15.3 \mathrm{~cm}
$$

FoDo Cell
At present the dipole length is "symbolic". Due to technical reasons we think of putting 2 dipoles of 11 m length each between the quads

TLEP ... mini beta hardware

$L^{*}=4 \mathrm{~m}$

Quadrupole (mini- β):

$$
\begin{aligned}
& L_{\text {quadrupole }}=0.75 \mathrm{~m} \\
& k=0.43 \mathrm{~m}^{-2} \\
& g=k^{*} B \rho \approx 250 \mathrm{~T} / \mathrm{m}
\end{aligned}
$$

aperture assumption:

$$
r_{0}=30 \sigma
$$

$$
\sigma_{x}=\sqrt{\varepsilon_{x} \beta_{x}}=\sqrt{2 n m * 600 m}
$$

$$
=1.1 \mathrm{~mm}
$$

$$
\begin{aligned}
\sigma_{y} & =\sqrt{\varepsilon_{y} \beta_{y}}=\sqrt{0.002 \mathrm{~nm}^{*} 18000 \mathrm{~m}} \\
& =0.19 \mathrm{~mm}
\end{aligned}
$$

pole tip field:
$B_{0} \approx 30 \mathrm{~mm} * 250 \mathrm{~T} / \mathrm{m} \rightarrow$ scale mini- β quad length to 7.5 m

$$
=7.5 \mathrm{~T}
$$

$$
B_{0}=0.75 \mathrm{~T}
$$

* beam separation / crossing angle / synchrotron radiation / beam-beam interaction in the vicinity of strong quadrupole gradients

TLEP ... Lattice Design

24 Arcs : built out of 56 standard FoDo cells \& 2 half bend cells at beginning and end length of arc: $\approx 3.0 \mathrm{~km}$
each arc is embedded in dispersion free regions ...
arcs are connected by straight. sections ... 12 long (mini β and $R F$)
... 12 ultra shorties tbc

TLEP Octant

Straight - Arc - Arc - Straight

arcs are connected in pairs via a disp-free-empty cell
-> only reason: in case of additional insertions we get the boundary conditions for free.

TLEP Arc-Straights

8 Straights : 9 empty (i.e. dispersion free) FoDo cells including matching sections arc-straight, $l=450 \mathrm{~m}$

to be optimised: β_{y} at matching section, needs an additional quadrupole lens \rightarrow already built in but not used yet. and / or optimisation of the lens positions

TLEP Mini-Betas

4 Mini-beta-Insertions : based on empty (i.e. dispersion free) FoDo cells

$$
\begin{aligned}
& L^{*}=4 m \\
& \quad \beta^{*}{ }_{x}=1 \mathrm{~m}, \beta^{*}{ }_{y}=1 \mathrm{~mm}
\end{aligned}
$$

standard doublet structure \& matching section

$$
\beta_{m, a x}=18 \mathrm{~km}
$$

TLEP The Ring

rf-sections

$L_{\text {ring }}=79.9 \mathrm{~km}$
4 min- betas,
24 disp free straights, 12 long straights 8 for rf equipment, 4 for mini-betas \& rf

TLEP

... new parameter list

	TLEP Z	TLEP W	TLEP H	TLEP t		$\begin{aligned} & \text { TLEP ttH \& } \\ & \text { ZHH } \end{aligned}$
$\mathrm{E}_{50 \mathrm{~m}}[\mathrm{GeV}]$	45	80	120	175		250
circumf. [km]	100	100	100	100		100
beam current [mA]	1940	154	29.8			1.6
\#bunches/beam	7500	3200	167		20	10
\#e--bunch [$10{ }^{\text {II }}$]	4.0	1.0	3.7	0.88	7.0	3.3
\# arc cells in units of base cell	6	2	2		2	1
horiz. emit. [nm]	29.2	3.3	7.5	2.0	16.0	4.0
vert. emit. [nm]	0.06	0.017	0.015	0.002	0.016	0.004
bending rad. [km]	11.0	11.0	11.0	17.0		11.0
$\mathrm{K}_{\text {c }}$	500	200	500	1000		1000
mom. c. $\alpha\left[10^{-5}\right]$	3.6	0.4	0.4	0.1	0.4	0.1
$\mathrm{P}_{\text {leessa/beam [MW] }}$	50	50	50	5		50
$\beta *[\mathrm{~m}]$	0.5	0.2	0.5	1.0		1.0
B: $[\mathrm{mm}]$	1.0	1.0	1.0	1.0		1.0
$\sigma^{*}[\mathrm{~mm}]$	121	26	61	45	126	63
$\sigma^{*},[\mu \mathrm{~m}]$	0.25	0.13	0.12	0.045	0.126	0.063
$\delta^{s k}{ }_{\text {ms }}[\%]$	0.05	0.09	0.14	0.20		0.29
$\sigma^{5 k}{ }^{\text {mma }}$ [mm]	1.16	0.91	0.98	0.68	1.35	1.56
$\delta^{\text {tet }}$ me $[\%]$	0.13	0.20	0.30	0.23	0.29	0.34
$\mathrm{\sigma}^{\text {tet }{ }_{\text {cres }}[\mathrm{mm}]}$	2.93	1.98	2.11	0.77	1.95	1.81
hourglass $F_{\text {liz }}$	0.61	0.71	0.69	0.90	0.71	0.73
$E^{\text {Sp }}$ /ms/turn [GeV]	0.03	0.3	1.7	7.5		31.4
$V_{\text {RF, }}$ tot [GV]	2	2	6	12		35
i (turns)	1319	242	72	23		8
$\delta_{\text {maxal }}[\%]$	5.3	10.6	13.4	19.0	9.5	5.9
$\xi_{\text {s }} / \mathrm{IP}$	0.068	0.086	0.094	0.057		0.075
$\xi_{n} /$ IP	0.068	0.086	0.094	0.057		0.075
$f_{i}[\mathrm{kHz}]$	0.77	0.19	0.27	0.14	0.29	0.266
$E_{\text {ax }}[\mathrm{MV} / \mathrm{m}]$	3	3	10	20		20
eff. RF length [m]	600	600	600	600		1750
$f_{\text {GF }}[\mathrm{MHz}]$	800	800	800	800		800
$\mathcal{L} / \mathrm{IP}\left[10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	5860	1640	508	132	104	48
number of IPs	4	4	4	4		4
beam lifetime [min] (rad. Bhabha)	99	38	24	21	26	13
beam lifetime [min] (beamstrahlung Telnov with $\eta=2 \%$)	$>10^{23}$	$>10^{6}$	38	14	$\begin{aligned} & 2.1 \\ & {[11.6} \\ & \text { with } \end{aligned}$	$\begin{aligned} & 0.3 \\ & {[2.8} \\ & \eta=3 \%] \end{aligned} \text { with }$

TLEP ... Lattice Design V9.e

beam dynamics of the ring

Main Parameters:

momentum compaction

$$
\begin{aligned}
\alpha_{c p} & \approx \frac{\langle D\rangle}{R}=\frac{11 * 10^{-2} m}{L_{0} /(2 \pi)} \approx 8.64 * 10^{-6} \quad \text { MADX: } \alpha_{c p}=8.94 * 10^{-6} \\
\eta & \approx \frac{1}{\gamma^{2}}-\alpha_{c p} \approx-\alpha_{c p} \quad \gamma=\frac{175000}{0.511}=342466
\end{aligned}
$$

energy loss per turn:

$$
\begin{array}{ll}
\Delta U_{0}(\mathrm{keV}) \approx \frac{89 * E^{4}(\mathrm{GeV})}{\rho} & N_{\text {dipoles }}=2932 \\
\Delta U_{0} \approx 8.4 \mathrm{GeV} & \theta=\frac{2 \pi}{2932}=2.14 \mathrm{mrad} \\
& E=175 \mathrm{GeV}, \quad B \rho=583.33 \\
M A D X: \Delta U_{0}=8.2 \mathrm{GeV} & \rho=\frac{L_{B}}{\theta} \approx 9.95 \mathrm{~km}
\end{array}
$$

Main Parameters:

Damping \& Beam Emittance

Global parameters for electrons, radiate $=\mathrm{T}$:

C	79896.4 m	f0	0.003752264908 MHz
T0	266.5 musecs	alfa	$8.937464662 \mathrm{e}-06$
eta	$8.937456136 \mathrm{e}-06$	gamma(tr)	334.4974653
Bcurrent	$5.410611548 \mathrm{e}-05 \mathrm{~A} /$ bunch	Kbunch	1
Npart	$9 \mathrm{e}+10$ /bunch	Energy	175 GeV
gommir	342466.4839	heta	1

Damping partition numbers		1.00447477	0.99999615	1.99552171
Damping constants [1/s]		$0.88324891 \mathrm{E}+02$	$0.87931079 \mathrm{E}+02$	$0.17546905 \mathrm{E}+03$
Damping times [s]		$0.11321837 \mathrm{E}-6$	0.11372543E-01	$0.56990106 \mathrm{E}-02$
Emittances [pi microm]		$0.16335337 \mathrm{E}-02$	$0.83929190 \mathrm{E}-28$	$0.19355070 \mathrm{E}+01$
RF system:				
Cavity	length [m]	voltage [MV]	log	[MHz]
cav	1	70	0.4 75	2465

Nota bene: Emittance is as before nicely small .. still smaller than the design value (2nm). however for a theoretical, ideal lattice without coupling, beam-beam, solenoid fields, tolerances \rightarrow error tolerances to be considered, \rightarrow how realistic is $2 n m$ and 1 permille for $\varepsilon_{y} / \varepsilon_{x}$

Synchrotron Radiation Power
$175 \mathrm{GeV}, 80 \mathrm{~km}$

$$
\begin{aligned}
& N_{p}=9 * 10^{12} \\
& \Delta U_{0}=8.2 \mathrm{GeV} \\
& T_{0}=266 \mu \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P_{s y} \approx \frac{\Delta U_{0}}{T_{0}} * N_{p}=\frac{8.2 * 10^{6} \mathrm{eV}^{*} 1.6 * 10^{-19} \mathrm{Cb}}{266 * 10^{-6} \mathrm{~s}} * 9 * 10^{12} \\
& \Delta P_{s y} \approx 44 \mathrm{MW}
\end{aligned}
$$

... and Saw-Tooth effect (still without mini-beta)
rf distributed over 12 straights
and 216 cavities (60MV each)
TLEP

Next steps:

* Optics fine tuning: including radiation effects

* Do we really need $D_{x}=15 \mathrm{~cm}$ or should we relax ??
* Establish complete versions for different Mini Beta Options local / global Q'correction
* Optimise RF distribution how many straights do we really need ???
* Lattice for lower energies beam separation ???
* $80 \mathrm{~km} / 100 \mathrm{~km} ? ?$? tbd
* start with the Ph.D. topics: what about the momentum acceptance ???
*** define a mid term parameter table ($t \gg 2$ days)

