TLEP ... Lattice Design & Beam Optics

Parameter-List on TKLEP-WEB Page !! emittance !!

TI	LEP Z	TLEP W	TLEP H	TLEP t
Ebeam [GeV]	45	80	120	175
I _{total} [mA]	1180	124	24	5.4
#bunches/beam	4400	600	80	12
#e-/beam [1012]	1960	200	40.8	9.0
horiz. emit. [nm]	30.8	9.4	9.4	(10)
vert. emit. [nm]	0.07	0.02	0.02	0.01
<u>β*.[m]</u>	0.5	0.5	0.5	1
<u> [mm]</u>	0.1	0.1	0.1	1
$\sigma *_x [\mu m]$	124	78	68	100
<u>σ*, [μm]</u>	0.27	0.14	0.14	0.10
L/IP[10 ³² cm ⁻² s ⁻¹]	5600	1600	480	130

Reminder: TLEP ... the very first steps

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb[GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
#bunches/beam	4	2808	4	2625	80	12
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.8
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J _e	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2
β* _v [cm]	5	10	0.1	0.1	0.1	0.1
σ* _x [μm]	270	30	71	78	43	63
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32
hourglass F _{he}	0.98	0.99	0.59	0.71	0.75	0.65
ΔE ^{sR} _{loss} /turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3
SuperKEKB: $\epsilon / \epsilon = 0.25\%$						

TLEP ... Lattice Design ... Version 1...2

Arc: 96 standard FoDo cells & 2 half bend cells at beginning and end length of arc: 2.8km length of straight section: 0.45 km

TLEP ... Lattice Design

Arc: the single FoDo cell

until now ... 2 dipoles / 2 quadrupoles to be optimised according to hardware engineering

short cell length: ≈ 30 m

advantage: small betas small dispersion small emittance

but: realistic hardware design ?

TLEP ... Lattice Design

Arc: the single FoDo cell

phase advance: $90^{\circ} / 60^{\circ}$

to be discussed ...

90° horizontally: small dispersion & emittance 60° vertically: small beam size (β_y) and better orbit correction tolerance (LEP experience)

TLEP... Lattice Design (175 GeV)not the very first steps anymore (... V9.e)

Main modifications wrt. previous versions: longer cells to achieve higher dispersion values

Text-Book like approach

still 80 km, standard FoDo structure fill factor, robustness, easy to handle & modify easy to understand & optimise analytically

Choice of single cell: compared to V.3 ... V.6 cell length increased to $L_{cell} = 50m$

equilibrium emittance

FoDo Cell

At present the dipole length is "symbolic". Due to technical reasons we think of putting 2 dipoles of 11m length each between the quads

TLEP ... mini beta hardware

* beam separation / crossing angle / synchrotron radiation / beam-beam interaction in the vicinity of strong quadrupole gradients

TLEP ... Lattice Design

24 Arcs : built out of 56 standard FoDo cells & 2 half bend cells at beginning and end length of arc: ≈ 3.0km each arc is embedded in dispersion free regions ...

arcs are connected by straight. sections ... 12 long (mini β and RF) ... 12 ultra shorties tbc

TLEP Octant

Straight – Arc – Arc – Straight

arcs are connected in pairs via a disp-free-empty cell -> only reason: in case of additional insertions we get the boundary conditions for free.

TLEP Arc-Straights

8 Straights : 9 empty (i.e. dispersion free) FoDo cells including matching sections arc-straight, l = 450m

to be optimised: β_y at matching section, needs an additional quadrupole lens \rightarrow already built in but not used yet. and / or optimisation of the lens positions

TLEP Mini-Betas

4 Mini-beta-Insertions : based on empty (i.e. dispersion free) FoDo cells

 $L^{*}=4m$ $\beta_{x}^{*} = 1m, \beta_{y}^{*} = 1mm$ standard doublet structure & matching section $\beta_{m,ax} = 18 \text{ km}$

TLEP The Ring rf-sections

TLEP ... new parameter list

	TLEP Z	TLEP W	TLEP H	TLEP t		TLEP ttH &	
Ebeam [GeV]	45	80	120	175	175		
circumf. [km]	100	100	100	100		100	
beam current [mA]	1440	154	29.8	0.7			
#bunches/beam	7500	3200	167	160	20	10	
#e-/bunch [10 ¹¹]	4.0	1.0	3.7	0.88	7.0	3.3	
# arc cells in units of	6	2	2	1	2	1	
base cell							
horiz. emit. [nm]	29.2	3.3	7.5	2.0	16.0	4.0	
vert. emit. [nm]	0.06	0.017	0.015	0.002	0.016	0.004	
bending rad. [km]	11.0	11.0	11.0	11.0		11.0	
κ _ε	500	200	500	1000		1000	
mom. c. $\alpha_{c} [10^{-5}]$	3.6	0.4	0.4	0.1	0.4	0.1	
Ploss,SR/beam [MW]	50	50	50	50		50	
$\beta_{\chi}[m]$	0.5	0.2	0.5	1.0		1.0	
β*, [mm]	1.0	1.0	1.0	1.0		1.0	
σ_x^* [µm]	121	26	61	45	126	63	
$\sigma_{\gamma}^{*}[\mu m]$	0.25	0.13	0.12	0.045	0.126	0.063	
δ ^{sk} ms [%] σ ^{ss} zms [mm]	0.05	0.09	0.14	0.20		0.29	
σ ^{sR} _{z.ms} [mm]	1.16	0.91	0.98	0.68	1.35	1.56	
$\delta^{\text{ter}}_{\text{rms}}$ [%]	0.13	0.20	0.30	0.23	0.29	0.34	
σ ^{tot} z.rms [mm]	2.93	1.98	2.11	0.77	1.95	1.81	
hourglass F_{hz}	0.61	0.71	0.69	0.90	0.71	0.73	
E ^{SR} los/turn [GeV]	0.03	0.3	1.7	7.5		31.4	
V _{RF} , tot [GV]	2	2	6	12		35	
τ ₁ (turns)	1319	242	72	23		8	
$\delta_{max,RF}$ [%]	5.3	10.6	13.4	19.0	9.5	5.9	
ζ _s /IP	0.068	0.086	0.094	0.057	0.057		
ζ _r /IP	0.068	0.086	0.094	0.057			
$f_{\rm s}[\rm kHz]$	0.77	0.19	0.27	0.14	0.29	0.075 0.266	
$E_{\rm axx}$ [MV/m]	3	3	10	20		20	
eff. RF length [m]	600	600	600	600		1750	
f _{RF} [MHz]	800	800	800	800		800	
\mathcal{L} /IP[10 ³² cm ⁻² s ⁻¹]	5860	1640	508	132	104	48	
number of IPs	4	4	4	4		4	
beam lifetime [min]	99	38	24	21	26	13	
(rad. Bhabha)							
beam lifetime [min]	>10 ²⁵	>10 ⁶	38	14	2.1	0.3	
(beamstrahlung					[11.6	[2.8 with	
Telnov with n=2%)					with	η=3%]	
					-2.69/1	1	

Main Parameters:

momentum compaction

$$\alpha_{cp} \approx \frac{\langle D \rangle}{R} = \frac{11*10^{-2}m}{L_0/(2\pi)} \approx 8.64*10^{-6}$$

$$\eta \approx \frac{1}{\gamma^2} - \alpha_{cp} \approx -\alpha_{cp}$$
 $\gamma = \frac{175000}{0.511} = 342466$

energy loss per turn:

$$\Delta U_0(keV) \approx \frac{89 * E^4(GeV)}{\rho}$$
$$\Delta U_0 \approx 8.4 \ GeV$$

MADX: ΔU_0 =8.2 GeV

$$N_{dipoles} = 2932$$

$$\theta = \frac{2\pi}{2932} = 2.14 \, mrad$$

$$E = 175 \, GeV, \quad B\rho = 583.33$$

$$\rho = \frac{L_B}{\theta} \approx 9.95 \, km$$

TLEP ... *V* 9.*e*

Main Parameters:

Damping & Beam Emittance

Global parameters for electrons, radiate = T:

Nota bene: Emittance is as before nicely small .. still smaller than the design value (2nm). however for a theoretical, ideal lattice without coupling, beam-beam, solenoid fields, tolerances \rightarrow error tolerances to be considered, \rightarrow how realistic is 2nm and 1 permille for $\varepsilon_v / \varepsilon_x$

Synchrotron Radiation Power 175 GeV, 80km

 $N_p = 9*10^{12}$

 $\Delta U_0 = 8.2 \ GeV$

 $T_0 = 266 \,\mu s$

$$\Delta P_{sy} \approx \frac{\Delta U_0}{T_0} * N_p = \frac{8.2 * 10^6 eV * 1.6 * 10^{-19} Cb}{266 * 10^{-6} s} * 9 * 10^{12}$$
$$\Delta P_{sy} \approx 44 \ MW$$

... and Saw-Tooth effect (still without mini-beta)

rf distributed over 12 straights and 216 cavities (60MV each)

Next steps:

- * **Optics fine tuning:** including radiation effects
- * Do we really need $D_x = 15$ cm or should we relax ??
- * Establish complete versions for different Mini Beta Options local / global Q' correction
- * Optimise RF distribution how many straights do we really need ???
- * Lattice for lower energies beam separation ???
- * 80 km / 100 km ??? tbd
- * start with the Ph.D. topics: what about the momentum acceptance ???
- *** define a mid term parameter table (t >> 2 days)