Progress on the ttH coupling at LHC, and projections for HL-LHC

Introduction

- Two main probes of ttH coupling at LHC:
 - gluon fusion production cross section ($\sigma \sim |y_t|^2$), assuming no BSM particles in the loop.
 - ttH associated production cross section, a tree level process proportional to $|y_t|^2$
- The first is pretty well known: already now the experimental accuracy on y_t is ~20%
- Significant progress from the experimental side on the second point in the last months.

ttH searches at LHC

Experimental signatures considered:

- tt + b-jets, to search for H→bb
 old staple, explored both at ATLAS & CMS
- tt + γγ: very small signal yield, considered mostly for the high-luminosity projections as systematics play a negligible role in it.
- **tt** + **4***l*: statistics limited, O(50) events in 3 ab⁻¹
- tt + ττ: with hadronically decaying taus
- **tt** + **leptons** + **jets** (inclusive): latest CMS search for $H \rightarrow WW$, ZZ, $\tau\tau (\tau \rightarrow \ell)$

CERN

4

ttH searches at CMS, 8 TeV

ttH leptonic analysis

- Search for final states with multiple leptons (e or μ) from the top and Higgs decays:
 - Three viable signatures: ($l^{\pm}l^{\pm}$, 3l, 4l) + b-jets
- Main challenges:
 - Reducible background: tt with fake l from b-jets
 Dedicated lepton ID developed to suppress it.
 - Irreducible backgrounds (ttW, ttZ/γ*): rely on theoretical predictions, charge asymmetry, and kinematic (jet multiplicity, event centrality)
 - Full event kinematic can't be reconstructed: combine partial kinematic variables in an MVA

G. Petrucciani (CERN)

6

ttH leptonic analysis: 8 TeV

• Expect 0.5-4.4 events, inclusive S/B ~ 1/10

		μμ	ee	еµ	3ℓ	4ℓ
ttH	$t\bar{t}H, H \rightarrow WW$	2.0 ± 0.3	0.9 ± 0.1	2.7 ± 0.4	3.2 ± 0.6	0.28 ± 0.05
	$t\bar{t}H,H ightarrow ZZ$	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
	t $\bar{t}H$, $H ightarrow au au$	0.6 ± 0.1	0.3 ± 0.0	0.9 ± 0.1	1.0 ± 0.2	0.15 ± 0.02
ttV	tŦW	8.2 ± 1.5	3.4 ± 0.6	13.0 ± 2.2	9.2 ± 1.9	-
	tī Z/ γ^*	2.5 ± 0.5	1.6 ± 0.3	4.2 ± 0.9	7.9 ± 1.7	1.25 ± 0.88
	t ī WW	0.2 ± 0.0	0.1 ± 0.0	0.3 ± 0.1	0.4 ± 0.1	0.04 ± 0.02
	$tar{t}\gamma$	-	1.3 ± 0.3	1.9 ± 0.5	2.9 ± 0.8	-
\$	WZ	0.8 ± 0.9	0.5 ± 0.5	1.2 ± 1.3	4.2 ± 0.9	-
	ZZ	0.1 ± 0.1	0.0 ± 0.0	0.1 ± 0.1	0.4 ± 0.1	0.45 ± 0.09
	rare SM bkg.	1.1 ± 0.0	0.4 ± 0.0	1.5 ± 0.0	0.8 ± 0.0	0.01 ± 0.00
akes	non-prompt	10.8 ± 4.8	8.9 ± 4.5	21.2 ± 8.1	33.2 ± 12.3	0.53 ± 0.32
	charge flip	-	1.9 ± 0.6	2.4 ± 0.8	-	-
-	all signals	2.7 ± 0.4	1.2 ± 0.2	3.7 ± 0.6	4.4 ± 0.8	0.52 ± 0.09
	all backgrounds	23.7 ± 5.2	18.0 ± 4.7	45.9 ± 8.6	58.9 ± 12.7	2.28 ± 0.94
	data	41	19	51	68	1

√s = 8 TeV, L = 19.6 fb⁻¹

CMS Preliminary, 4I channel

4l

Data ##H

ttZ/γ

Others

ZZ Fakes

Events

3

2.5

2

1.5

0.5

ttH leptonic analysis: 8 TeV

Signal extraction from MVA output distribution (l[±]l[±], 3l), or jet multiplicity (4l)

10/16/13

8

ttH leptonic analysis: beyond

- Current analysis designed for 20 fb⁻¹ at 8 TeV:
 Inclusive selection to preserve signal efficiency
 - Main focus was to contain the reducible bkg.
- The picture will change at 14 TeV and high luminosity. Higher event yields will allow isolating categories of higher S/B events, or whose kinematic can be reconstructed (important in case there will be non-Higgs BSM physics in the energy reach of LHC!)

10/16/13

Projections for LHC and HL-LHC

CMS Projections for 14 TeV, 300 & 3000 fb⁻¹

- Including bb, $\tau_h \tau_h$, $\gamma \gamma$ & multilept. (no $H \rightarrow 4\ell$) the multilepton is new wrt the ECFA studies.
- Two scenarios:
 - 1. Pessimistic: keep systematics as in 8 TeV analysis
 - 2. Optimistic: assume experimental systematics improve as √L, theoretical systematics halved

	300	fb ⁻¹	3000 fb⁻¹	
	scenario 1	scenario 2	scenario 1	scenario 2
Δy _t from ggH	8%	6%	5%	3%
Δy _t from ttH	12%	9%	8%	4%

Several reasons to be optimistic from the experimental side:

- ttH is easy to trigger: signatures leptons or photons, jets, b-jets, missing energy...
- unlike in VBF, jets in ttH are central: pile-up can be dealt with using the tracker.
- the analyses do not depend critically on the performance of any single physics object
- multiple channels with promising sensitivity provide a good redundancy

ttH @ HL-LHC: theory

- theory uncertainties are a big component of the projected uncertainty, but there is room for improvements:
 - $\sigma(ttH)$: existing result only done at NLO QCD
 - PDF uncertainties: can gain from $\sigma(tt)$?
 - Other relevant uncertainties: modelling of tt +jets, and $\sigma(ttV)$ also known only at NLO.
- Big cancellations on exp and th uncertainties on the σ(ttH)/σ(ttZ) ratio. (for multi-lepton and γγ final states)

Conclusions

- LHC Run I will yield a direct measurement of the top-Higgs Yukawa coupling within ~50% from ttH, and an indirect one within ~15% from the gluon fusion cross section.
- CMS Projections for HL-LHC give 4%–10% uncertainty on the direct y_t measurement (depending on assumptions on systematics), and 3%–5% on the indirect one from σ(ggH)

References

- CMS Higgs Physics Results <u>https://twiki.cern.ch/twiki/bin/view/</u> <u>CMSPublic/PhysicsResultsHIG</u>
- CMS HL-LHC Projections for ECFA [reference to be added]
- ATLAS HL-LHC Projections
 <u>https://twiki.cern.ch/twiki/bin/view/</u>

 <u>AtlasPublic/UpgradePhysicsStudies</u>