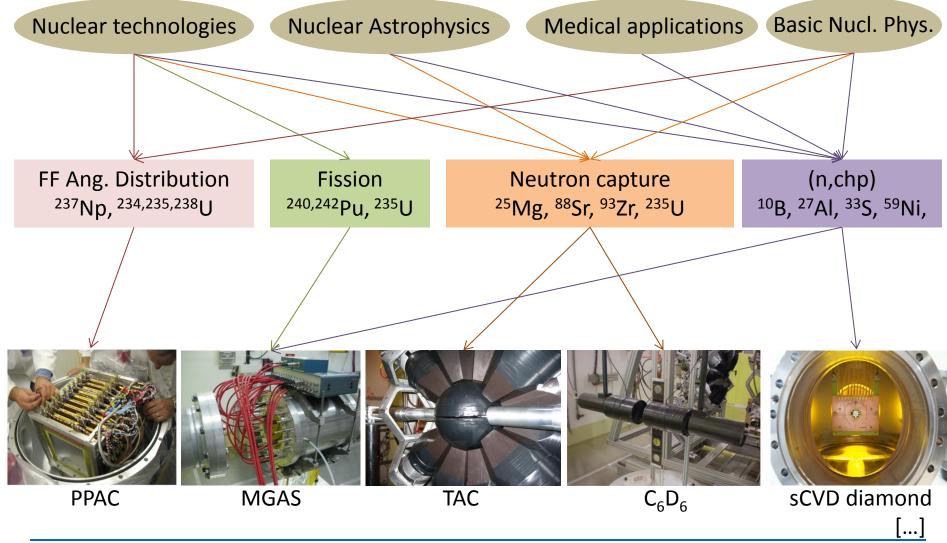


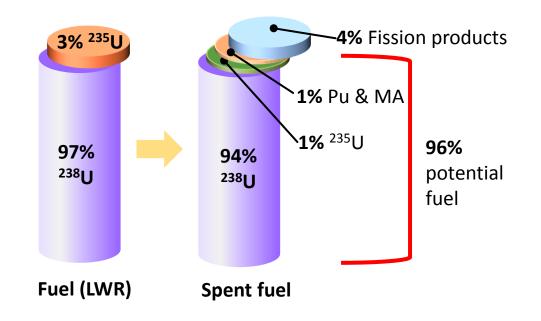
The n_TOF Collaboration, <u>www.cern.ch/nTOF</u>


Summary of n_TOF measurements performed in 2012

(CERN 44th INTC meeting, June 26th 2013)

Carlos GUERRERO (CERN Fellow) n_TOF Run and Analysis Coordinator

n_TOF measurements in 2012



C. Guerrero 44th INTC Meeting at CERN, June 26th 2013

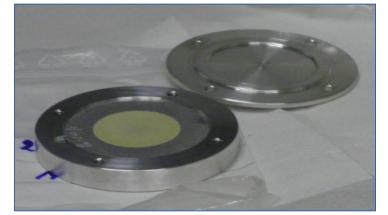
Cross sections for Nuclear Technology

Cross sections for Nuclear Technology

New nuclear reactor concepts:

- a) Gen-IV: Fast reactors that can operate with fuels including U, Pu and MA
- b) ADS (Accelerator Driven Systems): dedicated nuclear waste burners

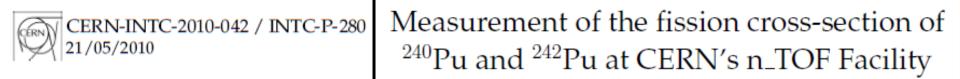
New fuels composition and different neutron energy regime call for new reactions, whose cross sections are not known with the required accuracy.

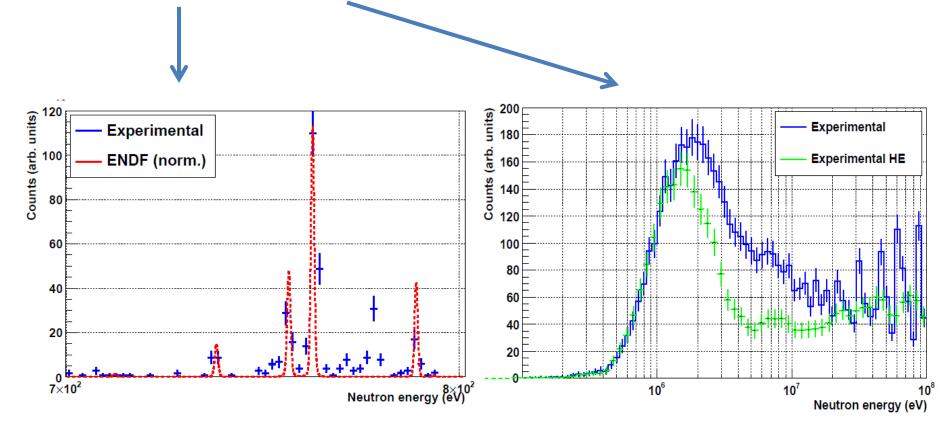




CERN-INTC-2010-042 / INTC-P-280 Measure 21/05/2010 240P11 ar

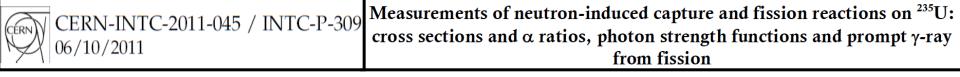
Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu at CERN's n_TOF Facility

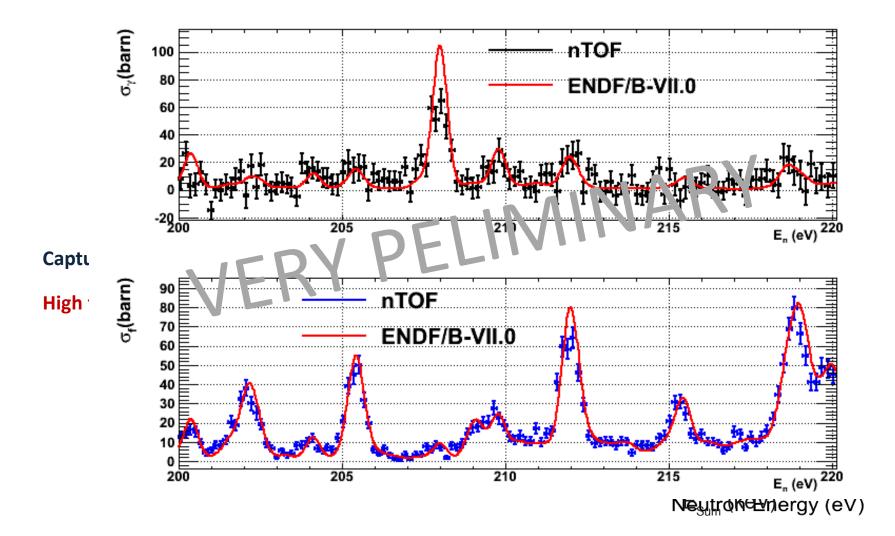

²⁴² Pu				
²³⁸ Pu	0.002719%			
²³⁹ Pu	0.00435%			
²⁴⁰ Pu	0.01924%			
²⁴¹ Pu	0.00814%			
²⁴² Pu	99.96518%			
²⁴⁴ Pu	0.00036%			
Mass	3.0mg			
Activity	0.13 MBq			
Also spontaneous fission				



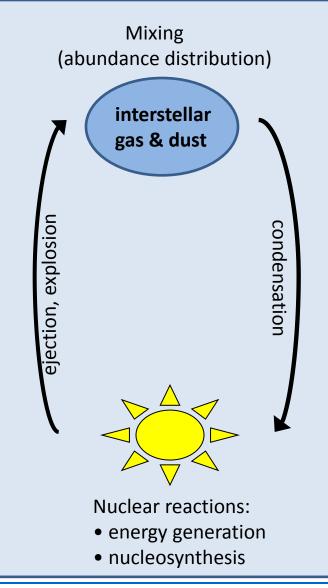
A. Tsinganis (PhD) CERN (CH) & NTUA (Greece)

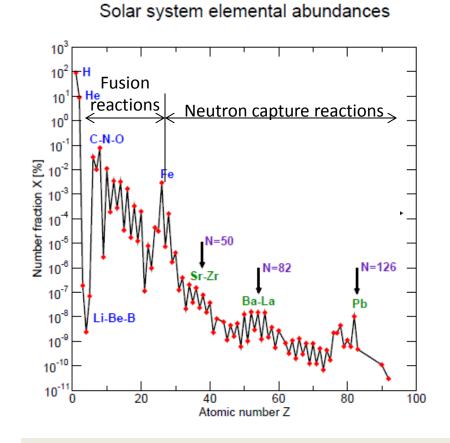

With only 30% of the statistics analyzed, the ²⁴²Pu data look promising, both in the <u>RRR</u> and the <u>high energy</u> region, up to at least 200 MeV!


C. Guerrero 44th INTC Meeting at CERN, June 26th 2013


A. Tsinganis (PhD) CERN (CH) & NTUA (Greece)

C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 J. Balibrea (PhD) CIEMAT (ES) and CERN (CH)




J. Balibrea (PhD) CIEMAT (ES) and CERN (CH)

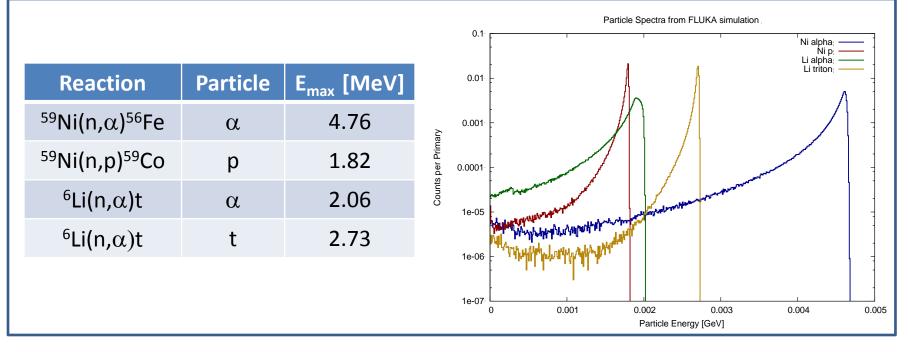
Cross sections for Astrophysics (nucleosynthesis of elements)

Cross sections for Astrophysics (nucleosynthesis of elements)

Chemical elements beyond Iron are synthesized via neutron capture reactions in stars:

- ~ ½ by the *s*-process (red giants)
- ~ ½ by the *r*-process (explosive)

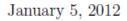
C. Guerrero 44th INTC Meeting at CERN, June 26th 2013


Sample from ORNL (USA):

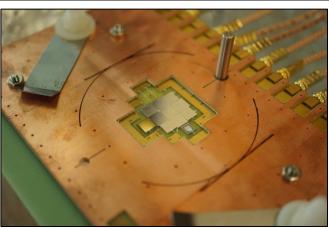
205±5 µg LiF: 95% ⁶Li (thickness = 394 nm)

<u>180±5 μg</u> metallic Ni: 95% ⁵⁹Ni => 516 kBq

Lowest mass measured at n_TOF to date!



C. Weiss (PhD) CERN (CH) and TUW (AUSTRIA)

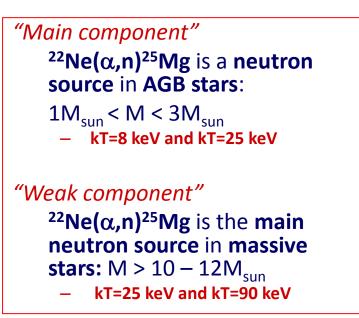


New development

Array of 9 sCVD diamond diodes:

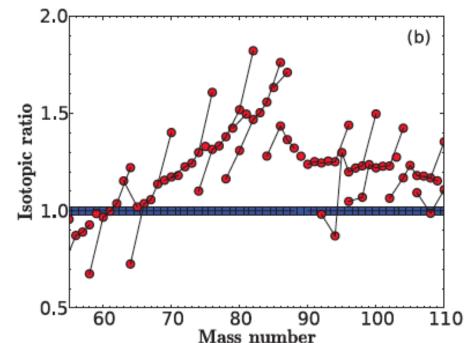
- 1. Thickness: 150 μm
- 2. Detector size 5x5 mm² (each)
- 3. Electrodes: 200 nm Al

CIVIDEC



C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 C. Weiss (PhD) CERN (CH) and TUW (AUSTRIA)

The s-process and ²⁵Mg: a neutron poison!

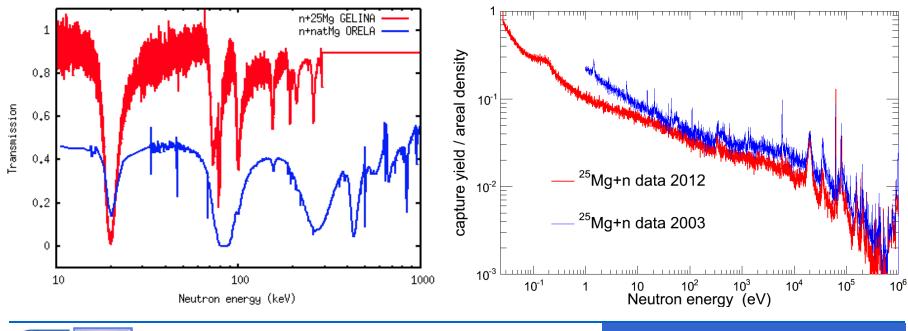


²²Ne(α ,n)²⁵Mg is a neutron source in AGB stars and the main one in massive stars, subsequently ²⁵Mg becomes a neutron poison trough the ²⁵Mg(n, γ) reaction

PHYSICAL REVIEW C 85, 044615 (2012)

Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications

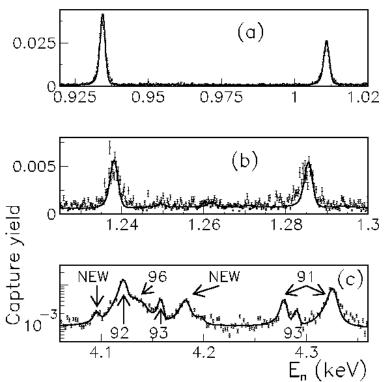
C. Massimi, ^{1,2,*} P. Koehler, ³ S. Bisterzo, ⁴ N. Colonna, ⁵ R. Gallino, ⁴ F. Gunsing, ⁶ F. Käppeler, ⁷ G. Lorusso, ⁵ A. Mengoni, ^{8,9} M. Pignatari, ¹⁰ G. Vannini, ^{1,2} U. Abbondanno, ¹¹ G. Aerts, ⁶ H. Álvarez, ¹² F. Álvarez-Velarde, ¹³ S. Andriamonje, ⁶ J. Andrzejewski, ¹⁴ P. Assimakopoulos, ^{15,†} L. Audouin, ¹⁶ G. Badurek, ¹⁷ M. Barbagallo, ⁵ P. Baumann, ¹⁸ F. Bečvář, ¹⁹ F. Belloni, ¹¹ M. Bennett, ²⁰ E. Berthoumieux, ⁶ M. Calviani, ⁹ F. Calviño, ²¹ D. Cano-Ott, ¹³ R. Capote, ^{8,22} C. Carrapiço, ^{23,6}
 A. Carrillo de Albornoz, ²³ P. Cennini, ⁹ V. Chepel, ²⁴ E. Chiaveri, ⁹ G. Cortes, ²⁵ A. Couture, ²⁶ J. Cox, ²⁶ M. Dahlfors, ⁹ S. David, ¹⁶ I. Dillmann, ⁷ R. Dolfini, ²⁷ C. Domingo-Pardo, ²⁸ W. Dridi, ⁶ I. Duran, ¹² C. Eleftheriadis, ²⁹ M. Embid-Segura, ¹³ I. Ferrant ^{16,†} A. Ferrari ⁹ R. Ferreira-Marques ²⁴ I. Fitznatrick ⁹ H. Frais-Koelbl ⁸ K. Fuiji ¹¹ W. Furman ³⁰


C. Massimi INFN (IT) and U. Bologna (IT)

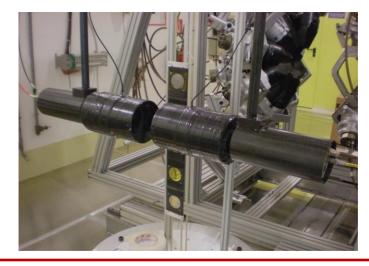
²²Ne(α ,n)²⁵Mg is a neutron source in AGB stars and the main one in massive stars, subsequently ²⁵Mg becomes a neutron poison trough the ²⁵Mg(n, γ) reaction

The measurement on 2003 suffered from some uncertainties that now have been highly reduced by

- 1. Using a highly pure metallic sample
- 2. Measuring both capture (@n_TOF) and total (@JRC/IRMM/GELINA) cross sections
- 3. Using the upgrade n_TOF facility (highly reduced γ -background since 2010)


C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 C. Massimi INFN (IT) and U. Bologna (IT)

CERN-INTC-2011-046 / INTC-P-310 06/10/2011


Neutron capture cross section of ⁹³Zr

G. Tagliente et al., Phys. Rev. C 87, 014622 (2013) "The ${}^{93}Zr(n,\gamma)$ reaction up to 8 keV neutron energy"

Limitations:

- Al+Ti capsule because of sample activity
- High in-beam γ-ray background

Thanks to the availability of a Type A experimental area (since 2010) the measurement has been repeated:

- Absence of Al+Ti capsule
- Lower in-beam γ-ray background

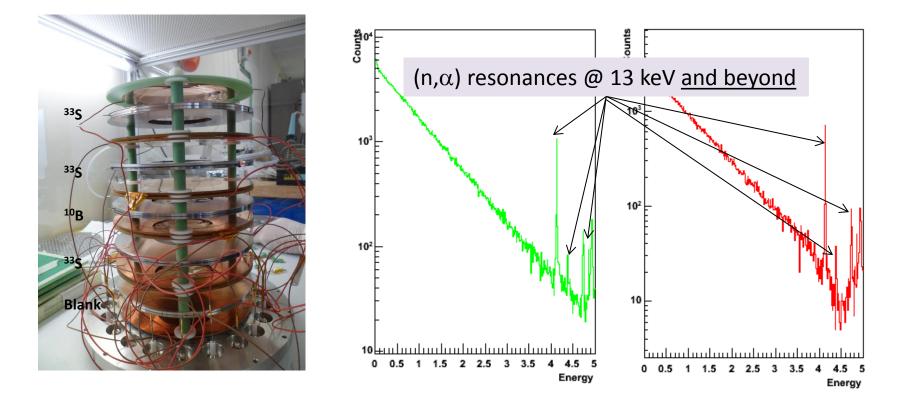
Both result in lower background, and thus:

- Better accuracy
- Higher neutron energy limit

C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 G. Tagliente INFN-Bari (IT)

Cross sections for Medical Physics (Neutron Capture Therapy)

	RN-INTC-2012-006 / INTC-P-322 01/2012	Micromegas de	etector for ³³ S(n,α) cross section measurement	t at n_TOF
³³ S as	a cooperative target for NC	T	Boron Neutron Capture Therapy (BNCT) CANCER CELL 2. Neutron beam (N) by cancer cell. 4. Boron disintegrates emitting cell-killing radiation.	
	³³ S(n,α) ³⁰ Si		¹⁰ B(n,α) ⁷ Li	
	E _α ~3.1 MeV		E _{Li} ≈0.84 MeV E _α ≈1.47 MeV	
	LET≈126 keV/µm (optimal	value ~100)	LET(Li)=162 keV/μm LET(α)=196 keV/μm	
	x _α ~15 μm E _n ≈13 keV -> σ(n,α)≈20 barns?		x _{Li} ~5 μm x _α ~8 μm	
			E _n ~eV -> σ(n,α)≈3840 b E _n ~keV -> σ(n,α)≈5 b	
	No gamma		E _γ ≈0.48 MeV	
			I. Porras, Phys. Med. Biol. 53 (2008)	



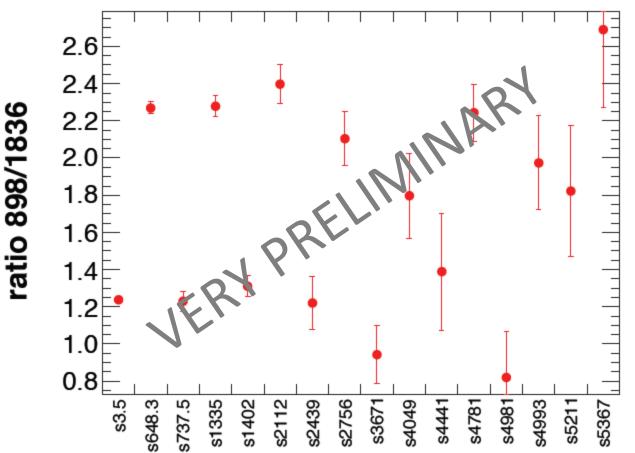
M. Sabate and J. Praena U. Sevilla (ES) and CERN (CH)

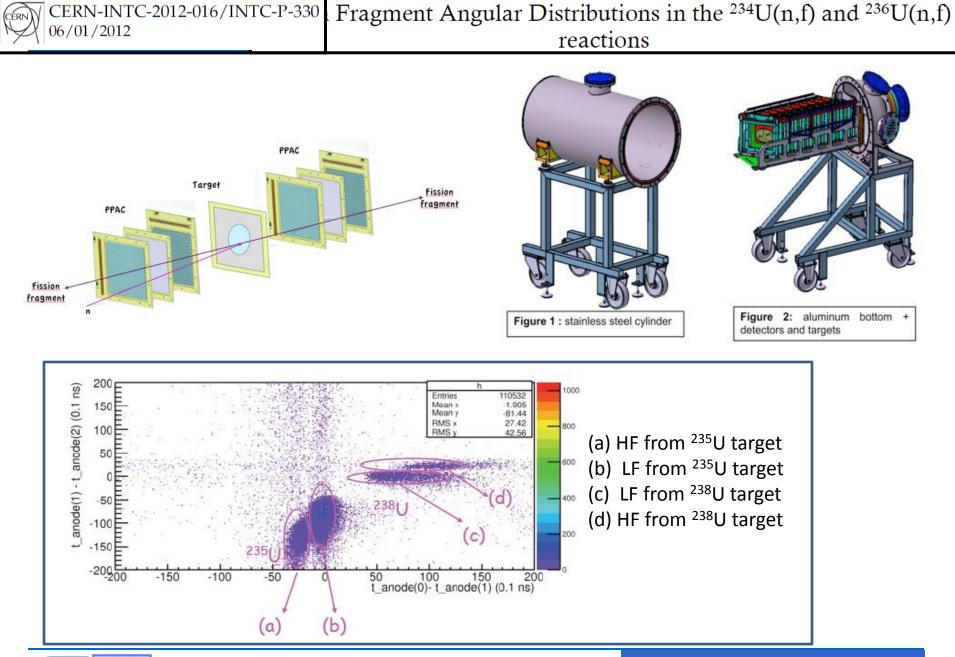
Measurement carried out in November-December 2012

10 MGAS detectors with 10 samples back-to-back: ³³S thin (x4), ³³S thick (x2), blanks (x2), ¹⁰B (x2) [samples prepared at CERN by W. Vollenberg]



C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 M. Sabate and J. Praena U. Sevilla (ES) and CERN (CH)


Basic Nuclear Physics

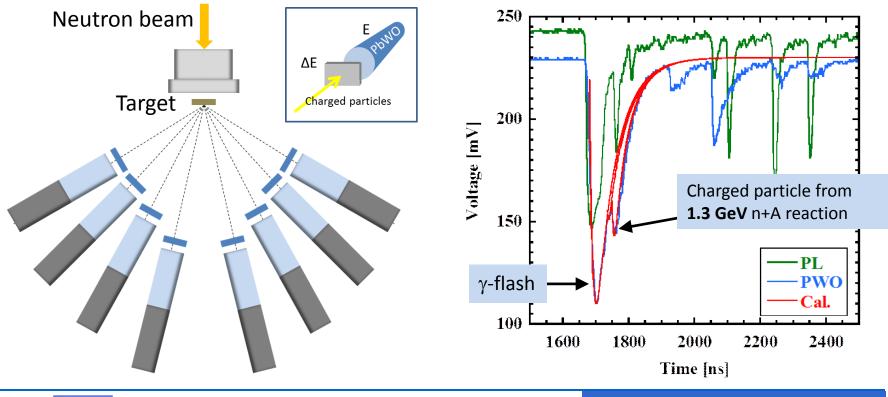

Pilot experiment to measure **spin-dependent level densities** in ⁸⁷Sr with BaF₂ TAC by:

- Exploit gamma-ray spectra from decay from resonance state
- gamma-ray multiplicity spectra
- primary gamma-rays (presence, angular distribution)

C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 F. Gunsing CEA-Saclay (FR)

44th INTC Me

ERN


C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 E. Leal USC (ES) and IN2P3-Orsay (FR) Feasibility study for measuring (n, α) and (n,d) reactions at (very) high energies GeV

(p,p'), (p,n): 0.1 – 1.5 GeV
(p,d): 0.3 and 0.4 GeV, 0.558 GeV, 1.2 GeV
(p, α) : 0.16 and 0.2 GeV, 1.2 GeV
(p,p') at low energy : 40-60 MeV

Nucl. Instr. Meth. B 291, 38-44 (2012) Phys. Rev. C 86, 034610, (2012)

Only this Intranuclear Cascade model is capable of predicting light cluster production

First test for studying these reactions (at high energy) when induced by neutrons

C. Guerrero 44th INTC Meeting at CERN, June 26th 2013 Y. Uozumi Kyushu University (Japan)

"Parasitic" experiments @ n_TOF beam dump

- R. Palomo et al.(U. Sevilla, Spain)

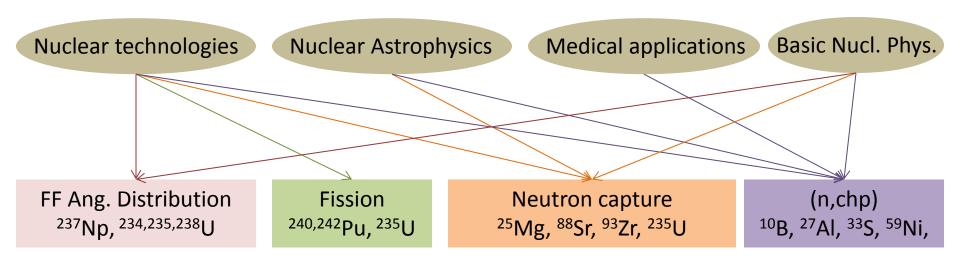
Irradiation of 3D silicon detectors with high energy neutrons

- S. Puddu, F. Murtas and M. Silari (CERN/RP) Test of a position sensitive GEM neutron detector

- S. Puddu, F. Murtas and M. Silari (CERN/RP) Test of a movable GEM array as beam profiler

C. Tecla, F. Murtas and M. Silari (CERN/RP)
 Tests with Medipix detectors at n_TOF

R. Palomo and I. Villa (U. Sevilla and IFCA, Spain)
 FBG fibers response to high energy neutrons


M. Tardocchi (CNR-IFP, Milano, Italy)
 Diamond detector test under a neutron beam

Conclusions

In 2012 the n_TOF facility has operated braking several n_TOF records:

- Maximum number of experiments in a single campaign (10 dedicated + 6 parasitic)
- Highest integrated beam intensity in a single campaign (~1.9x10¹⁹)
- Highest number of published papers in a year (1 PRL, 5 PRC, 3 EPJ-A, 2 NIM-A)

