Measurement of the Transverse Single-Spin Asymmetries for π^0 and Jet-like Events at Forward Rapidities at STAR in p+p Collisions at $\sqrt{s} = 500$ GeV

Mriganka Mouli Mondal (for STAR experiment)
Texas A&M University
ᵀransverse Single Spin Asymmetries (TSSA)

Forward Meson Spectrometer in the STAR experiment

EM-Jets in forward and central rapidity

A_N measurements from RHIC Run 11 at $\sqrt{s} = 500 \text{ GeV}$
Spin-dependent transverse momentum dependent (TMD) function $S_T(Px_{k_T})$
Brodsky, Hwang, Schmidt, 02
Collins, 02, Ji, Belitsky, Yuan, 02

Twist-3 quark-gluon correlations
Efremov & Teryaev: 1982 & 1984
Qiu & Sterman: 1991 & 1999

Need 2 scales Q^2 and p_t
Remember pp: most observables one scale
Exception: DY, W/Z-production

Collinear/twist-3
$Q, Q_T \gg \Lambda_{QCD}$
$p_T \sim Q$

Intermediate Q_T
$Q \gg Q_T / p_T > \Lambda_{QCD}$

Twist-3 quark-gluon correlations
Efremov, Teryaev; Qiu, Sterman

Need only 1 scale Q^2 or p_t
But should be of reasonable size should be applicable to most pp observables $A_N(\pi^0/\gamma/jet)$
$$\pi^0 A_N \text{ Measurements at Forward Rapidity}$$

Inclusive π^0 production

$$p_\uparrow + p \rightarrow \pi^0 + X$$

Transverse Single Spin Asymmetry

$$A_N \equiv \frac{\sigma_\uparrow - \sigma_\downarrow}{\sigma_\uparrow + \sigma_\downarrow}$$

$$x_F = \frac{2p_Z}{\sqrt{s}}$$

✧ Rising A_N with x_F
✧ A_N nearly independent of \sqrt{s}
✧ No evidence of fall in A_N with increasing p_T
500 GeV Isolated π^0 results

$\sqrt{s} = 500$ GeV (Run 11) Transverse Single Spin π^0 Asymmetry vs p_T for small and large π^0 isolation cones. (Errors shown in these are following plots are statistical)

Higher Twist or other pQCD related models suggest A_N should fall at large p_T with at least 1 power of p_T.

These plots include 2 parameter fits for A_N vs p_T:

$$A_N(p_T) = [p_0] \times (p_T)^{p_1}$$

Fits are shown for both the 70 mRad and 30 mRad isolation cones.

✧ A_N is higher with increasing isolation radius
✧ A_N in increasing with x_F

DIS-2013 (Steven Heppelmann)
200 GeV Isolated π^0 results

A_N vs. Energy, averaged over pseudo-rapidity.
Compare 3 selection criteria based on photon energy outside the cone (all with 35mR cone and no soft E cut).

- 2 track (35mr) π^0 only
- 2 track (35mr) π^0 + Away γ's $\cos(\Delta\phi)<-0.5$
- 2 track (35mr) π^0 + Near γ's $\cos(\Delta\phi)>0$.

For π^0's with $X_F>0.45$:
Observation of additional Photons reduce A_N.

Events opposite "side photons" or "no" photons have similar A_N.
Same side photons lead to much reduced A_N.

DIS 2014, Warsaw, Apr. 28-May 2, 2014
RHIC: the world’s first and only polarized proton collider

For 2011: Average Blue Beam Polarization = 51.6% (Transverse)
Luminosity = 22 pb⁻¹
Forward Meson Spectrometer (FMS) :
-- Pb glass EM calorimeter covering $2.5<\eta<4.0$
-- Detect π^0, η, direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.
STAR detector cross view

FMS photon reconstruction:
- towers → clusters → photon
- shower shape fitting

BEMC+EEMC towers: to find central electromagnetic jets

FMS photons: to find forward electromagnetic jets
RHIC Run 11 (2011) pp @ √s=500 GeV

Forward Electromagnetic Jets (EM-Jets)
Jet algorithm : anti-k_T
R-parameter : 0.7
p_T^{EM-Jet} > 2.0 GeV/c

Leading EM-Jets : defined as EM-Jets with highest energy.
2.8<|EM-Jet|<4.0
40 GeV < Energy^{EM-Jet} < 100 GeV
(0.16 < x_F < 0.4)

Structure in EM-Jet p_T :
-- Acceptance non uniformity in small and large tower boundary inside FMS
-- Different trigger threshold influence different p_T region

DIS 2014, Warsaw, Apr. 28-May 2, 2014
Forward EM-Jet characteristics

No. of photons in leading EM-Jets

γγ invariant mass 2-photon EM-jets

2-photon jets are mostly π⁰
Events with more than 2 photons show jet-like energy flow
A_N from fits

A_N is calculated from $p_0 + P \times A_N \cos(\phi)$ fits over each fill on

$$\frac{N_{\uparrow}(\phi)-N_{\downarrow}(\phi)}{N_{\uparrow}(\phi)+N_{\downarrow}(\phi)} = p_0 + P \times A_N \cos(\phi)$$

--- A_N’s are corrected for polarization values from RHIC-fills
--- A_N and χ^2/NDF are calculated over entire fills

EM-Jet Energy = 55-57.5 GeV

For 2-photon isolated π^0

For each slice of data averaged over ~18 fills. Fits are well in control.
A_N vs. EM-Jet Energy

π^0-Jets – 2γ-EM-Jets with $m_{\gamma\gamma} < 0.3$ and $Z_{\gamma\gamma} < 0.8$

EM-Jets – with no. photons >2

✧ Isolated π^0’s have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)

https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383

✧ Asymmetries for jettier events are much smaller
A_N vs. EM-Jet Energy

STAR Preliminary

$p+p^\uparrow$ @ $\sqrt{s} = 500$GeV

- π^0-Jets ($x_F > 0$)
- π^0-Jets ($x_F < 0$)
- EM-Jets ($x_F > 0$)
- EM-Jets ($x_F < 0$)
- 2-photon-Jets $m_{\gamma\gamma} > 0.3$ ($x_F > 0$)

- π^0-Jets – 2γ-EM-Jets with $m_{\gamma\gamma} < 0.3$
- Z$_{\gamma\gamma} < 0.8$
- 2γ-EM-Jets ($\eta +$ continuum) - with $m_{\gamma\gamma} > 0.3$
- EM-Jets – with no. photons > 2

✧ Isolated π^0’s have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)

https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383

✧ Asymmetries for jettier events are much smaller
A_N for different # photons in EM-Jets

<table>
<thead>
<tr>
<th>EM-Jet Energy</th>
<th>40-60 GeV</th>
<th>60-80 GeV</th>
<th>80-100 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. photons</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- 1-photon events, which include a large π^0 contribution in this analysis, are similar to 2-photon events.

- Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π^0's.

- A_N decreases as the event complexity increases (i.e., the "jettiness".

- A_N for #photons >5 is similar to that for #photons = 5.

Jettier events

DIS 2014, Warsaw, Apr. 28-May 2, 2014
A_N with midrapidity activities

Midrapidity EM Jets

- **Jet algorithm**: anti-k_T, $R = 0.7$
 - $p_T^{\text{EM-Jet}} > 2.0$ GeV/c, $-1.0 < \eta^{\text{EM-Jet}} < 2.0$
- **Inputs for central EMJets**: towers from BEMC and EEMC
- **Leading central EM-Jets**: Jet with highest p_T

- **Case-I**: having no central jet
- **Case-II**: having a central jet

DIS 2014, Warsaw, Apr. 28-May 2, 2014
Characteristics of Coincident Central EM-Jets (case-II)

For Central EMJets

p_T distribution

Energy forward EMJet (GeV)

- 40-60
- 60-80
- 80-100

Energy flow within central EMJets

$\Delta R_{Jet,Towers}$

- Mean: 0.25
- RMS: 0.16

p_T balance (di-jet like)

Mean: 0.79
RMS: 0.39

Energy sharing (asymmetric scatterings)

- Mean: 0.07
- RMS: 0.04

Forward-central correlations

p_T balance

$E_{EMJet-Central}/E_{EMJet-Forward}$

Mean: 0.79
RMS: 0.39

Energy sharing

$E_{EMJet-Central}/E_{EMJet-Forward}$

Mean: 0.07
RMS: 0.04

DIS 2014, Warsaw, Apr. 28-May 2, 2014
Δφ correlation between forward and central EMJets

Correlation is stronger for more N_photon Jets
Correlation grows stronger for higher EMJets energy.
An EM-jet in the central rapidity region reduces the asymmetries for the forward isolated π⁰
A_N for the central jet: near and away in ϕ to the forward jet

Near and away side

Uncorrelated central EM-Jet is separated out

STAR Preliminary

DIS 2014, Warsaw, Apr. 28-May 2, 2014
A_N for **correlated central jets** and **no central jet cases**

Asymmetries for the forward isolated π^0 are low when there is a correlated away-side jet.
EM-jets are reconstructed from photons detected in the FMS at STAR.

Jets with isolated π^0 have large asymmetry.

Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π^0’s.

A_N decreases as the event complexity increases (i.e., the "jettiness").

Isolated π^0 asymmetries are smaller when there is a correlated EM-jet at mid-rapidity.

Both of these dependences raise serious question how much of the large forward π^0 A_N comes from $2 \rightarrow 2$ parton scattering.
Transverse Single-Spin Asymmetry and Cross-Section for π^0 and η Mesons at Large Feynman-x in $p^+ + p$ Collisions at $\sqrt{s} = 200$ GeV

STAR $p^+ + p \rightarrow \pi^0, \eta + X$ at $\sqrt{s} = 200$ GeV

- π^0 no center cut, $<p_T>$=3.7
 - π^0 center cut, $<p_T>$=3.68
- η center cut, $<p_T>$=3.68

PRD 86 051101(R) (2012)

Systematics arising from intermixing of event classes
No EM-jet within $-1 < \eta < 2$ ($p_T > 2.0 \text{GeV/c}$)

EM-Jet Energy = 40-60 \hspace{1cm} 60-80 \hspace{1cm} 80-100 \text{ GeV}

- no central jet
- isolated-
- 3-photon
- $x_F > 0$
- $x_F < 0$

A_N vs p_T^{EMJet} (GeV/c)

DIS 2014, Warsaw, Apr. 28-May 2, 2014
With a EM-jet with $-1 < \eta < 2$ ($p_T > 2.0 \text{GeV/c}$)

Diagram Description:

- **EM-Jet Energy = 40-60**
- **60-80**
- **80-100 GeV**

- $p_T^{\text{EMJet-central}} > 2.0 \text{GeV/c}$
- $-1.0 < \eta^{\text{EMJet-central}} < 2.0$

Graph Elements:

- A_N
- $x_F > 0$
- $x_F < 0$

Legend:

- **isolated-τ^0**
- **3-photon**
- **\ (>3-photon)**

Axes:

- p_T^{EMJet} (GeV/c)
- A_N

Note:

DIS 2014, Warsaw, Apr. 28-May 2, 2014