Production and spectroscopy of *b*-hadrons with ATLAS DIS 2014, Warsaw

Andy Chisholm † , for the ATLAS Collaboration

[†]University of Birmingham

1st May 2014

Introduction

Overview

Aim to give a summary of selected ATLAS results on the spectroscopy and production of b-hadrons at the LHC:

Observation of a new χ_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$

Phys. Rev. Lett. 108 (2012) 152001 (arXiv:1112.5154)

Measurement of Υ production

Phys. Rev. D 87, 052004 (2013) (arXiv:1211.7255)
 Measurement of the B⁺ meson production differential cross-section

All results presented are based upon the ATLAS 2011 *pp* dataset collected at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of up to 5 fb⁻¹

See also: Talks from Sue Cheatham, Tatjana Agatonovic-Jovin and Vladimir Nikolaenko on ATLAS charmonium, Λ_b and rare *B* meson decay measurements!

The ATLAS Detector

Relevant Components

- Muon Spectrometer (MS): Triggering $|\eta| < 2.4$ and Precision Tracking $|\eta| < 2.7$
- Inner Detector (ID): Silicon Pixels and Strips (SCT) with Transition Radiation Tracker (TRT) |η| < 2.5</p>
- LAr EM Calorimeter: Highly granular + longitudinally segmented (3-4 layers)
- Muon Trigger: Single and di-muon triggers - several p^µ_T thresholds (4–40 GeV)

Performance

- ID d_0 resolution $\sim 10 \, \mu m$
- $m(\mu^+\mu^-)$ resolution: $\sim 60 \text{ MeV}$ at J/ψ and $\sim 150 \text{ MeV}$ at $\Upsilon(nS)$

Dedicated di-muon triggers for quarkonium $\mathcal{Q} \rightarrow \mu^+ \mu^$ decays - huge gain in yields w.r.t. single muon trigger

General purpose detector, also well suited to b-hadron studies

The Bottomonium System - Introduction

The Υ and χ_b states represent the spin triplet (S = 1) S-wave and P-wave states of the bottomonium ($b\bar{b}$) spectrum:

A third χ_b triplet of states, $\chi_b(3P)$, is also expected below the $B\overline{B}$ threshold (around 10.525 GeV):

^{*} Theoretical Predictions: Phys. Rev. D 36 3401 (1987), Phys. Rev. D 38 279 (1988), Eur. Phys. J. C. 4 107 (1998)

Search for the $\chi_b(mP) \to \Upsilon(nS) \gamma$ decays with ATLAS...

Summary of ATLAS *b*-hadron measurements

Select events based on a variety of triggers which requiring either di-muon pairs or single high p_T muons...

Step 1: Common selection of $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ decays

- Oppositely charged di-muon pair
- Both muons reconstructed from track in ID combined with MS track
- $\mu^+\mu^-$ common vertex fit $\chi^2/[d.o.f.] < 20$

•
$$p_T^{\ \mu} > 4$$
 GeV and $|\eta^{\ \mu}| < 2.3$

• $p_{\tau}^{\mu^+\mu^-} > 12 \text{ GeV and } |\gamma^{\mu^+\mu^-}| < 2.0$

Di-muon candidates×10³ / (50 MeV) B - Y(2S) selection 50 40 30 20 10 8.5 9.0 9.5 10.0 10.5 11.0m(µ+µ) [GeV]

Data ∫ L dt = 4.4 fb⁻¹

A - Y(1S) selection

ATLAS

70

60

Select $\Upsilon(1S)$ and $\Upsilon(2S)$ with $m(\mu^+\mu^-)$ regions A and B:

A
$$\Upsilon(1S)$$
 9.25 < $m(\mu^+\mu^-)$ < 9.65 GeV

B
$$\Upsilon(2S)$$
 9.80 $< m(\mu^+\mu^-) <$ 10.10 GeV

Observation of a new χ_b state (arXiv:1112.5154) - Analysis

Aim to reconstruct $\chi_b(mP) \to \Upsilon(nS) \gamma$ decays using both converted and unconverted photons separately (different strengths and limitations)...

- Unconverted Poor resolution at low p_T^{γ} X High efficiency \checkmark

Step 2: Photon Selection (Unconverted)

- ► Reconstruct from EM calorimeter energy deposits not matched to any track, require $E_{T}^{\gamma} > 2.5 \text{ GeV}$
- ► $|\eta^{\gamma}| < 2.37$ (Barrel-Endcap transition region 1.37 $< |\eta^{\gamma}| < 1.52$ excluded)
- "Loose" photon ID selection: Including limits on hadronic leakage and requirements on the EM shower shape (reject backgrounds from jets)

Photon Pointing Correction: η^{γ} is corrected to point back to $\mu^{+}\mu^{-}$ vertex significant resolution improvement!

Step 2: Photon Selection (Converted)

- Reconstruct from ID tracks <u>alone</u>
- Only two-track conversions are retained
- 4 silicon detector hits required for each electron track
- $p_T^\gamma > 1.0 \,\, {
 m GeV}$ and $|\eta^\gamma| < 2.0$
- Radius of conversion vertex
 R > 40 mm to reduce background contamination
- Require 3D impact parameter of conversion w.r.t. μ⁺μ⁻ vertex is less than 2 mm

Associate $\Upsilon(nS) \rightarrow \mu^+\mu^-$ and photon candidates and study $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(kS)}$ distribution

Resolution better than $m(\mu^+\mu^-\gamma)$ alone!

Observation of a new χ_b state (arXiv:1112.5154) - Results

Mass peaks consistent with the known $\chi_b(1P)$ and $\chi_b(2P)$ states observed, in addition to a third peak, statistical significance $> 6\sigma$ in <u>both</u> channels...

Perform separate fits to measure mass barycentre of new state: Converted (left): $\bar{m}_3 = 10.530 \pm 0.005$ (stat.) ± 0.009 (syst.) GeV

Simultaneous fit to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ distributions

Unconverted (right): $\bar{m}_3 = 10.541 \pm 0.011$ (stat.) ± 0.030 (syst.) GeV

Larger systematic dominated by low p_T photon energy scale uncertainty

Summary

- Mass of new state <u>consistent</u> with theoretical expectations for X_b(3P) states
- Now also confirmed by DØ (Phys. Rev. **D86** (2012) 031103
- and LHCb (LHCb-CONF-2012-020)

Implications

- Important "new" contribution to the phenomenology of bottomonium production
- In particular, \u03c0 (35) production previously thought to be free from significant feed-down contributions (clean probe of direct polarisation)
- X_b(3P) → Υ(3S) γ potentially significant contribution that should be accounted for by theory!

Observed bottomonium radiative decays in ATLAS, L = 4.4 fb¹

$\Upsilon(nS) \rightarrow \mu^+ \mu^-$ Selection

- ► Use p^µ_T > 4 GeV di-muon trigger + simple offline di-muon selection
- Both muons reconstructed from track in ID combined with MS track
- Perform full $\mu^+\mu^-$ vertex fit
- $p_T^{\ \mu} > 4$ GeV and $|\eta^{\ \mu}| < 2.3$

Experimental Corrections

- Measure muon reconstruction and trigger efficiency with $J/\psi \rightarrow \mu^+\mu^$ and $\Upsilon(nS) \rightarrow \mu^+\mu^-$ events in data
- Calculate acceptance with high statistics MC simulation for various Υ(nS) polarisation scenarios

 Measurement Procedure

Weight each event to correct for experimental losses, extract Υ(nS) yields with a weighted binned χ² fit to the m(μ⁺μ⁻) distribution in bins of Υ |y| and p_T

Measurement of Υ production (arXiv:1211.7255) - Results

Acceptance Corrected $\Upsilon(1S)$ cross-section \rightarrow

- Acceptance sensitive to Y polarisation blue uncertainty band
- Colour Evaporation Model does not reproduce shape of data well
- NNLO* Colour Singlet Model generally underestimates data, though doesn't include (large) feed-down contributions

\leftarrow <u>Fiducial</u> $\Upsilon(nS)$ cross-sections

- No sensitivity to Y polarisation
- More precise test for predictions calculated within fiducial volume

Summary of ATLAS b-hadron measurements 11 / 17

 $\Upsilon(3S)$ and $\Upsilon(2S)$ production relative to $\Upsilon(1S)$

Summary

- Many precise measurements!
- Total cross sections and differential measurements in |y| also made!
- Can provide stringent constrains on theoretical predictions of bottomonium production
- All measurements can be found in HEPDATA: hepdata.cedar.ac.uk

Evidence for beginning of plateau at high p_T?

Introduction

- Measurements of B⁺ meson production provide an important test of our understanding of b-quark production and fragmentation
- The high $pp \rightarrow b\bar{b}X$ cross section at the LHC provides large data samples for high precision measurements
- Measurement uses pp data sample of 2.4 fb⁻¹ collected at $\sqrt{s} = 7$ TeV

$B^+\ {\rm meson}\ {\rm reconstruction}$

- ► Utilise $B^+ \rightarrow J/\psi K^+$ channel, experimentally clean with large branching fraction $\approx 1.03 \times 10^{-3}$
- Trigger with $J/\psi \rightarrow \mu^+\mu^-$ and reconstruct $p_T^{\mu} > 4$ GeV and $|\eta^{\mu}| < 2.3$

- Add track with p_T > 1 GeV, assign K⁺ mass
- ▶ Perform $\mu^+\mu^-K^+$ vertex fit, require $\chi^2/[d.o.f.] < 6$
- ▶ Retain candidates with $5.04 < m(\mu^+\mu^-K^+) < 5.8 \text{ GeV}$ and $p_T^B > 9 \text{ GeV}$

Summary of ATLAS b-hadron measurements

Cross-section Measurement

Determine differential cross-section from:

$$\mathcal{B} \cdot \frac{d\sigma(pp \to B^+ X)}{dp_T dy} = \frac{N^{B^+}}{\mathcal{L} \cdot \Delta p_T \cdot \Delta y}$$

- Assume equal production of B[±] and measure together
- N^{B⁺} is fitted number of B⁺ candidates, corrected for efficiency and acceptance
- Use mixture of MC and data-driven efficiency corrections

Fitting Procedure

- Un-binned maximum likelihood fit
- Model reflections with MC samples

Differential Cross-section

- Measured differentially in |y| and p_T
- Good agreement between ATLAS and CMS

FONLL prediction (arXiv:1205.6344)

- b-guark production calculated in fixed order next-to-leading logarithm (FONLL) approach
- b fragmentation function fitted from I FP data
- Use world average value $f_{\bar{b} \to B^+} = (40.1 \pm 0.8)\%$
- Good agreement with data!

Total Cross-section

 $\sigma(pp
ightarrow B^+ + X) = 10.6 \pm 0.3 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.2 (\mathcal{L}) \pm 0.4 (\mathcal{B}) \, \mu \text{b}$ $\sigma^{\text{FONLL}}(pp \rightarrow b + X) \cdot f_{\overline{b} \rightarrow B^+} = 8.6^{+3.0}_{-1.9} \text{ (scale)} \pm 0.6 \text{ (}m_b\text{)} \text{ µb}$

ATLAS

10

Measurement of B⁺ production (arXiv:1307.0126) - Results

Comparisons to MC generators

- Compare to two combinations of MC *b*-quark production (POWHEG and MC@NLO)
 + parton showering (Pythia and Herwig)
- Good agreement in both cases - though both tend to underestimate data at low p_T
- Systematic change in Data w.r.t. MC@NLO+Herwig as a function of |y|

Summary

Wealth of precise data can help inform modelling of b-quark production and fragmentation!

POWHEG+Pythia

MC@NLO+Herwig

Conclusion

Observation of a new χ_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$

- "New" contribution to bottomonium production phenomenology Measurement of T production in 7 TeV pp collisions at ATLAS
- Many measurements to provide very stringent constraints on models of bottomonium production

Measurement of the B^+ meson production differential cross-section

Detailed measurements to test b-quark production and fragmentation models

Further interesting ATLAS results on *b*-hadrons:

 b-hadron production cross-section from D^{*}μX final states Nucl. Phys. B 864 (2012) 341 (arXiv:1206.3122)

Expect new results on excited *b*-hadrons, new decay modes and exotic state searches soon!