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Processes

I Universality of GPDs,

I Meson production - additional di�culties,
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So, in addition to spacelike DVCS ...

N N’

q

e
e

γ

GPD

( a )

Figure: Deeply Virtual Compton Scattering (DVCS) : lN → l′N ′γ
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we can also study timelike DVCS
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Figure: Timelike Compton Scattering (TCS): γN → l+l−N ′

Why TCS:

I universality of the GPDs

I another source for GPDs (special sensitivity on real part of GPD H),

I spacelike-timelike crossing,
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General Compton Scattering:

γ∗(qin)N(p)→ γ∗(qout)N
′(p′)

variables, describing the processes of interest in this generalized Bjorken limit,
are the scaling variable ξ and skewness η > 0:

ξ = −q
2
out + q2

in

q2
out − q2

in

η , η =
q2
out − q2

in

(p+ p′) · (qin + qout)
.

I DDVCS: q2
in < 0 , q2

out > 0 , η 6= ξ

I DVCS: q2
in < 0 , q2

out = 0 , η = ξ > 0

I TCS: q2
in = 0 , q2

out > 0 , η = −ξ > 0
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Coe�cient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are
de�ned through relations:

Aµν(ξ, η, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµνT

(
H(ξ, η, t) γ+ + E(ξ, η, t)

iσ+ρ∆ρ

2M

)
+ iεµνT

(
H̃(ξ, η, t) γ+γ5 + Ẽ(ξ, η, t)

∆+γ5

2M

)]
u(P ) ,

,where:

H(ξ, η, t) = +

∫ 1

−1

dx

(∑
q

T q(x, ξ, η)Hq(x, η, t) + T g(x, ξ, η)Hg(x, η, t)

)

H̃(ξ, η, t) = −
∫ 1

−1

dx

(∑
q

T̃ q(x, ξ, η)H̃q(x, η, t) + T̃ g(x, ξ, η)H̃g(x, η, t)

)
.
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Coe�cient functions

Renormalized coe�cient functions for DVCS are given by

T q(x) =

[
Cq0 (x) + Cq1 (x) + ln

(
Q2

µ2
F

)
· Cqcoll(x)

]
− (x→ −x) ,

T g(x) =

[
Cg1 (x) + ln

(
Q2

µ2
F

)
· Cgcoll(x)

]
+ (x→ −x) ,

T̃ q(x) =

[
C̃q0 (x) + C̃q1 (x) + ln

(
Q2

µ2
F

)
· C̃qcoll(x)

]
+ (x→ −x) ,

T̃ g(x) =

[
C̃g1 (x) + ln

(
Q2

µ2
F

)
· C̃gcoll(x)

]
− (x→ −x) .

The results for DVCS and TCS cases are simply related:

TCST (x, η) = ±
(
DVCST (x, ξ = η) + iπ · Ccoll(x, ξ = η)

)∗
,

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86, 2012.

where + (−) sign corresponds to vector (axial) case.
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Models

H. Moutarde, B. Pire, F. Sabatié, L. Szymanowski and JW - Phys. Rev. D87 (2013)

In our analysis we use two GPD models based on double distibution:

Fi(x, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dα δ(β+ξα−x) fi(β, α, t)+D

F
i

(
x

ξ
, t

)
Θ(ξ2−x2) ,

The DD fi reads

fi(β, α, t) = gi(β, t)hi(β)
Γ(2ni + 2)

22ni+1Γ2(ni + 1)

[(1− |β|)2 − α2]ni

(1− |β|)2ni+1
,

where:

hg(β) = |β| g(|β|) , h̃g(β) = β∆g(|β|) ,
hqsea(β) = qsea(|β|) sign(β) , h̃qsea(β) = ∆qsea(|β|) ,
hqval(β) = qval(β) Θ(β) , h̃qval(β) = ∆qval(β) Θ(β) .

DF
i denotes the Polyakov-Weiss D-term. In our estimates we will use

parametrizations obtained by a �t to the chiral soliton model.
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I Factorized:
based on MSTW08 PDFs with simple factorizing ansatz for t - dependence

gu(β, t) =
1

2
Fu1 (t) , Fu1 (t) = 2F p1 (t) + Fn1 (t) ,

gd(β, t) = F d1 (t) , F d1 (t) = F p1 (t) + 2Fn1 (t) ,

gs(β, t) = gg(β, t) = FD(t) , FD(t) = (1− t/M2
V )−2 ,

with MV = 0.84 GeV, F p1 and Fn1 are electromagnetic Dirac form factors
of the proton and neutron. We use that model to construct only H.

I Goloskokov-Kroll:
based on CTEQ6m PDFs, and

gi(β, t) = ebit |β|−α
′
it

and simple parametrization of the sea quarks:

Hu
sea = Hd

sea = κsH
s
sea ,

with κs = 1 + 0.68/(1 + 0.52 lnQ2/Q2
0) ,

with the initial scale of the CTEQ6m PDFs Q2
0 = 4 GeV2. H̃ is

constructed using the Blümlein - Böttcher (BB) polarized PDF
parametrization to �x the forward limit. Meson electroproduction data
from HERA and HERMES have been considered to �x parameters for this
GPD in the GK model.
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Compton Form Factors - DVCS - Re(H)

Figure: The real part of the spacelike Compton Form Factor H(ξ) multiplied by ξ, as
a function of ξ in the double distribution model based on Kroll-Goloskokov (upper
left) and MSTW08 (upper right) parametrizations, for µ2

F = Q2 = 4GeV2 and

t = −0.1GeV2, at the Born order (dotted line), including the NLO quark corrections
(dashed line) and including both quark and gluon NLO corrections (solid line).
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Compton Form Factors - DVCS - Im(H)

Figure: The imaginary part of the spacelike Compton Form Factor H(ξ) multiplied by
ξ, as a function of ξ in the double distribution model based on Kroll-Goloskokov
(upper left) and MSTW08 (upper right) parametrizations, for µ2

F = Q2 = 4GeV2 and

t = −0.1GeV2, at the Born order (dotted line), including the NLO quark corrections
(dashed line) and including both quark and gluon NLO corrections (solid line).
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Compton Form Factors - TCS - Re(H)

Figure: The real part of the timelike Compton Form Factor H multiplied by η, as a
function of η in the double distribution model based on Kroll-Goloskokov (upper left)
and MSTW08 (upper right) parametrizations, for µ2

F = Q2 = 4 GeV2 and

t = −0.1 GeV2. Below the ratios of the NLO correction to LO result of the
corresponding models.
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Compton Form Factors - TCS - Im(H)

Figure: The imaginary part of the timelike Compton Form Factor H multiplied by η,
as a function of η in the double distribution model based on Kroll-Goloskokov (upper
left) and MSTW08 (upper right) parametrizations, for µ2

F = Q2 = 4 GeV2 and

t = −0.1 GeV2. Below the ratios of the NLO correction to LO result of the
corresponding models.
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TCS and Bethe-Heitler contribution to exlusive lepton pair photoproduction.

l+

l
−

p p’

γ

Figure: The Feynman diagrams for the Bethe-Heitler amplitude.

Figure: Handbag diagrams for the Compton process in the scaling limit.
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TCS

Berger, Diehl, Pire, 2002
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Figure: Kinematical variables and coordinate axes in the γp and `+`− c.m. frames.
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Interference
B-H dominant for not very high energies:

Figure: LO (dotted) and NLO (solid) TCS and Bethe-Heitler (dash-dotted)
contributions to the cross section as a function of t for Q2 = µ2 = 4GeV2 integrated
over θ ∈ (π/4; 3π/4) and over φ ∈ (0; 2π) for Eγ = 10GeV(η ≈ 0.11).

The interference part of the cross-section for γp→ `+`− p with unpolarized
protons and photons is given by:

dσINT
dQ′2 dt d cos θ dϕ

∼ cosϕ · ReH(η, t)

Linear in GPD's, odd under exchange of the l+ and l− momenta ⇒ angular
distribution of lepton pairs is a good tool to study interference term.
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JLAB 6 GeV data

Rafayel Paremuzyan PhD thesis

Figure: e+e− invariant mass distribution vs quasi-real photon energy. For TCS
analysis M(e+e−) > 1.1GeV and sγp > 4.6GeV2 regions are chosen. Left graph
represents e1-6 data set, right one is from e1f data set.
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Theory vs experiment
R.Paremuzyan and V.Guzey:

R =

∫
dφ cosφ

∫
dθ dσ∫

dφ
∫
dθ dσ

2
 t GeV
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Figure: Thoeretical prediction of the ratio R for various GPDs models. Data points
after combining both e1-6 and e1f data sets.
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TCS

The photon beam circular polarization asymmetry:

A =
σ+ − σ−

σ+ + σ−
∼ sinϕ · ImH(η, t)

Figure: Photon beam circular polarization asymmetry as a function of φ, for
t = −0.1 GeV2, Q2 = µ2 = 4 GeV2, integrated over θ ∈ (π/4, 3π/4) and for
Eγ = 10 GeV (η ≈ 0.11).
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Approved experiment at Hall B, and LOI for Hall A.
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Linear polarization

A. Goritschnig, B. Pire and JW - arXiv:1404.0713 [hep-ph]

In the case of a linearly polarized photon we now have a distinguished
transverse direction given by the polarization vector, which we choose to point
in the x-direction:

ε(q)µ = δ1µ

Momenta of other particles in γ − p c.m. frame are given by:

qµ = (q0, 0, 0, q0)

pµ = (p0, 0, 0,−q0)

q′µ = (q′0,∆T cos Φh,∆T sin Φh, q
′3)

p′µ = (p′0,−∆T cos Φh,−∆T sin Φh,−q′3)

where Φh is the angle between polarization vector and hadronic plane:

sin Φh = ~ε(q) · ~n = ~ε(q) · ~p
′ × ~p
|~p′ × ~p|

where ~n is the vector normal to the hadronic plane.
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Let us now turn to the contribution of the interference between the TCS and
BH mechanisms to the di�erential γp→ l+l−p cross section. For incoming
photons with polarization vector as in Eq. (3) it, up to our accuracy, reads:

dσ(INT )

dQ2dtdΩl+l−dΦh
=

1

211π5

1

s2
· 1

2

∑ (
MTCS(ε)M∗BH(ε) + c.c.

)
≡

dσ
(INT )
unpol

dQ2dtdΩl+l−dΦh
+

dσ
(INT )
linpol

dQ2dtdΩl+l−dΦh
,

where:

dσ
(INT )
unpol

dQ2dtdΩl+l−dΦh

∼
(

1 + cos2 θ

sin θ
cosφ

)
Re

[
HF1 −

t

4M2
EF2−ηH̃(F1 + F2)

]
,

dσ
(INT )
linpol

dQ2dtdΩl+l−dΦh

∼ −
(

sin θ cos(2Φh + 3φ)

)
Re

[
HF1 −

t

4M2
EF2+ηH̃(F1 + F2)

]
.
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We de�ne two observables sensitive to the unpolarized and linearly polarized
part of interference cross section. First one is similar (up to the terms formally
of the order t/Q2 or M2/Q2) to the R ratio de�ned in BDP in the case of an
unpolarized photon beam :

R̃ =

∫ 2π

0
dΦh2

∫ 2π

0
dφ cos(φ)

∫ 3π/4

π/4
sin θdθ dσ

dtdQ2dΩdΦh∫ 2π

0
dΦh

∫ 2π

0
dφ
∫ 3π/4

π/4
sin θdθ dσ

dtdQ2dΩdΦh

.

The second observable projects out the dσ
(INT )
linpol part of the interference cross

section:

R̃3 =
2
∫ 2π

0
dΦh cos(2Φh)2

∫ 2π

0
dφ cos(3φ)

∫ 3π/4

π/4
sin θdθ dσ

dtdQ2dΩdΦh∫ 2π

0
dΦh

∫ 2π

0
dφ
∫ 3π/4

π/4
sin θdθ dσ

dtdQ2dΩdΦh

.

Making use of R̃ and R̃3 we can de�ne the following observable which is
sensitive only to the interference term and which provides us with information
about H̃:

C =
R̃

R̃3

=
2− 3π

2 + π

Re
[
HF1 − t

4M2 EF2−ηH̃(F1 + F2)
]

Re
[
HF1 − t

4M2 EF2+ηH̃(F1 + F2)
] .
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How sensitive is C on the values of H̃? We take H̃g = {−1, 0, 1, 2, 3} · H̃GK
g
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Figure: C as a function of η, for Q2 = 4GeV2 and t = t0.
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Figure: C as a function of t, for Q2 = 4GeV2 and η = 0.1.
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Experimental possibilities

Hall D - �ux of linearly polarized photons, are rates big enough?
Hall B - low-Q2 tagger,
In the unpolarized electron scattering process, the virtual photon polarization is:

ε =

[
1 + 2

Q2 + ν2

Q2
tan2(θe′/2)

]−1

where ν is the photon energy and θe′ the electron scattering angle. The

longitudinal polarization is given by εL = Q2

ν2
ε , and the polarization density

matrix:

ρ =

 1
2
(1 + ε) 0 ∼ ε1/2L

0 1
2
(1− ε) 0

∼ ε1/2L 0 εL


end the matrix describes real transverse photons.
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E�ective photon approximation

dσep

dQ2
γdν

∼ F (Q2
γ , ν)M∗λ ρλλ

′
Mλ′ ,

ρλλ
′
≈

 1
2
(1 + ε) 0 0

0 1
2
(1− ε) 0

0 0 0

 ,

so:

dσep

dQ2
γdν

= F (Q2
γ , ν)

[
1

2
(1 + ε)σxxγp +

1

2
(1− ε)σyyγp

]
= F (Q2

γ , ν)
[
(1− ε)σunpγp + ε σlinpolγp

]
Cep =

R̃ep

R̃ep3
=

1− ε
ε

C
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Approved CLAS12 experiment - "Meson Spectroscopy with low Q2 electron
scattering in CLAS12".
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I Approved experiment - E12-12-001 : "Timelike Compton Scattering and
J/psi photoproduction on the proton in e+e- pair production with CLAS12
at 11 GeV."

I Approved experiment - E12-12-005 : "Meson spectroscopy with low Q2

electron scattering in CLAS12"

I Both in the same run group. Idea:extend the �rst one, by use of the
low-Q2 tagger from the second one.
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Summary

I Di�erences of spacelike and timelike Compton Scattering important - good
test of universality of GPDs,

I TCS already measured at CLAS 6 GeV, but much richer and more
interesting kinematical region available after upgrade to 12 GeV.

I Accepted proposal for CLAS 12 GeV,

I LOI for Hall A,

I Linear polarization in TCS may give some information on H̃.

I Possible with a low-Q2 tagger at CLAS? Or with a photon �ux at Hall D?
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