Phenomenology of unpolarized TMDs from SIDIS data

Andrea Signori

XXIII. Workshop on DIS and related subjects Warsaw – 30 April 2014

Our recent work

Published for SISSA by D Springer

RECEIVED: October 7, 2013 ACCEPTED: November 11, 2013 PUBLISHED: November 27, 2013

Investigations into the flavor dependence of partonic transverse momentum

Andrea Signori,^{a,b} Alessandro Bacchetta,^{c,d} Marco Radici^c and Gunar Schnell^{e,f}

DOI: 10.1007 / JHEP 11(2013)194

Andrea Signori - VU/Nikhef

A new goal

TMDs in SIDIS

Which transverse momenta ?

Motivations

Since the flavor dependence In the collinear case is strong ...

... WHY NOT LOOKING FOR IT IN K_ DEPENDENCE OF TMDS ?

- ✓ Lattice QCD calculations
 Musch et al., PRD 83 (11) 094507
 [...]
- Model calculations
 Chiral quark soliton model [Scweitzer *et al.*, JHEP 1301 (913) 163]
 Diquark spectator model [Bacchetta *et al.*, PRD **78** (08) 074010]
 Statistical approach [Bourrely *et al.*, PRD **83** (11) 074008]
 NJL-jet model [Matevosyan *et al.*, PRD **85** (12) 014021]
 [...]

✓ Previous fits
 JLab Hall C [Asaturyan *et al.*, (E00-108), PRC **85** (12) 015202]

With flavor dependence we can account *theoretically* for different cross sections for different target/final state hadron combinations.

Flavor dependent

Gaussian TMDs

Flavor dependent Gaussians

Different Gaussian parametrizations of TMD parts

Flavor dependent Gaussians

<u>Different</u> Gaussian parametrization of TMD parts

$$D_1^{a \to h}(z, P_{\perp}) = D_1^{a \to h}(z) \frac{1}{\pi \langle P_{\perp, a \to h}^2 \rangle} \exp\left\{-\frac{P_{\perp}^2}{\langle P_{\perp, a \to h}^2 \rangle}\right\}$$

4 different combinations out of

u, d, s
$$\longleftarrow$$
 π^{\pm}, K^{\pm}

$$\langle \boldsymbol{P}_{\perp,u\to\pi^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^-}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,d\to\pi^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,\mathrm{fav}}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,u\to K^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,uK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{s}\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,uK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,s\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,sK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\mathrm{all others}}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,\mathrm{unf}}^2 \rangle.$$

Kinematic dependence

Flavor analysis

Analysis

of HERMES data

Hermes

$$e^{\pm} + P/D \to e^{\pm} + \{\pi^{\pm}/K^{\pm}\} + X$$

Our selection

- Remove the first bin x-Q² (Q²>1.4 GeV²)
- 0.1 < z < 0.8
- $P_{hT}^2 < Q^2/3$

2688 points

2 targets, 4 final-state hadrons

1538 analyzed points

limited Q² range \Rightarrow safely neglect evolution <u>everywhere</u>

6 bins in x,

8 bins in z,

7 bins in P_{hT},

Andrea Signori - VU/Nikhef

Replica of the original data with Gaussian noise

We fit the replicated data...

... repeating the fit over the 200 replicas

Plot of the 68% CL bands

proton target global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

TMD PDFs – full analysis

TMD PDFs – full analysis

68% confidence intervals of best-fit parameters for TMD PDFs in the different scenarios

Parameters for TMD PDFs						
	Default	$Q^2 > 1.6 \text{ GeV}^2$	Pions only	Flavor-indep.		
$\left\langle \hat{m{k}}_{\perp,d_v}^2 ight angle ~ [ext{GeV}^2]$	0.30 ± 0.17	0.33 ± 0.19	0.34 ± 0.12	0.30 ± 0.10		
$\left\langle \hat{m{k}}_{\perp,u_v}^2 ight angle$ [GeV ²]	0.36 ± 0.14	0.37 ± 0.17	0.35 ± 0.12	0.30 ± 0.10		
$\left< \hat{m{k}}_{\perp,\mathrm{sea}}^2 \right> [\mathrm{GeV^2}]$	0.41 ± 0.16	0.31 ± 0.18	0.29 ± 0.13	0.30 ± 0.10		
α (random)	0.95 ± 0.72	0.93 ± 0.70	0.95 ± 0.68	1.03 ± 0.64		
σ (random)	-0.10 ± 0.13	-0.10 ± 0.13	-0.09 ± 0.14	-0.12 ± 0.12		

TMD FFs – full analysis

TMD FFs – full analysis

68% confidence intervals of best-fit parameters for TMD FFs in the different scenarios

Parameters for TMD FFs						
	Default	$Q^2 > 1.6 \text{ GeV}^2$	Pions only	Flavor-indep.		
$\left\langle \hat{P}_{\perp,\mathrm{fav}}^2 ight angle$ [GeV ²]	0.15 ± 0.04	0.15 ± 0.04	0.16 ± 0.03	0.18 ± 0.03		
$\left< \hat{\pmb{P}}_{\perp,\mathrm{unf}}^2 \right> \left[\mathrm{GeV^2}\right]$	0.19 ± 0.04	0.19 ± 0.05	0.19 ± 0.04	0.18 ± 0.03		
$\left< \hat{\pmb{P}}_{\perp,sK}^2 \right> [{ m GeV^2}]$	0.19 ± 0.04	0.19 ± 0.04	-	0.18 ± 0.03		
$\left\langle \hat{\pmb{P}}_{\perp,uK}^2 \right\rangle [{ m GeV^2}]$	0.18 ± 0.05	0.18 ± 0.05	-	0.18 ± 0.03		
eta	1.43 ± 0.43	1.59 ± 0.45	1.55 ± 0.27	1.30 ± 0.30		
δ	1.29 ± 0.95	1.41 ± 1.06	1.20 ± 0.63	0.76 ± 0.40		
γ	0.17 ± 0.09	0.16 ± 0.10	0.15 ± 0.05	0.22 ± 0.06		

TMD lib & plotter

TMD lib : a library of parametrizations of TMDs and uPDFs on the same footing of LHAPDF

F. Hautmann, H. Jung T. Rogers, P. Mulders, AS

TMD Project

Webpage maintained by: Ted Rogers, Andrea Signori

This is the development page for the TMD project. The purpose of this project is to organize a repositor theoretical and phenomenological studies of transverse-momentum-dependent parton distribution functions PDFs) and fragmentation functions (TMD FFs). We provde access to parametrizations and fits of TMDs, with and without taking into account the perturbative QCD evolution.

Extensions

[Amsterdam – Madrid – Pavia joint venture]

QCD evolution

Looking towards SIDIS + DY + I^t global fits ...

$$\sigma \sim \int d^{2}\mathbf{b} \ e^{-i\mathbf{b}\cdot\mathbf{q}_{T}} \mathcal{H}\left[\frac{Q_{f}}{\mu}\right] \times$$
Colline OPE
for small \mathbf{b}_{T}

$$\begin{bmatrix} C_{f/j} \otimes f_{j/N} \end{bmatrix} (x, b_{*}, Q_{0}) \ \mathcal{F}_{PDF}^{NP} \times \text{Intrinsic (large b)}$$
transverse momenta

$$\begin{bmatrix} C_{D/i} \otimes D_{i/h} \end{bmatrix} (z, b_{*}, Q_{0}) \ \mathcal{F}_{FF}^{NP} \times (Q_{0} \sim 1/b^{*})$$
Perturbative
transverse momenta
and evolution
(resummed logs)
$$\exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{PDF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP} \times Soft evolution
exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{FF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP}$$

$$31$$

e⁺e⁻ multiplicities

$$e^+e^- \longrightarrow h \text{ jet } X$$

Pin down the most physical flavor dependent sets looking at the spectrum in transverse momentum of e^+e^- collisions

Bands built out of the 200 replicas for TMD FF D₁

Waiting for the experimental values of these ratios..!

Impact on HEP

Spin asymmetries – extractions of polarized TMDs

$$A_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)} \propto \frac{F_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)}}{F_{UU}} \propto \frac{\sum_q e_q^2 \text{ TMD_PDF}^q \otimes_w \text{ TMD_FF}^q}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

Conclusions

There is a lot of room for flavor dependence :

- clear indication in TMD FFs that
 "q→π favored" width < "unfavored" & "q→K favored"
- TMD PDFs: hints that d_v width < u_v width < sea width

- if no K in final state: sea width $< d_v \sim u_v$ width
- flavor-independent fit performs worse but not ruled out
- anticorrelation: many intrinsic $\{\mathbf{k}_{\perp}, \mathbf{P}_{\perp}\}$ give same \mathbf{P}_{hT}

Backup slides

valence picture of proton, #u / #d = 2

Less up at larger transverse momentum..!

Lattice QCD Musch *et al.*, P.R. D**83** (11) 094507

Chiral quark soliton model (Schweitzer, Strikman, Weiss) JHEP 1301 (913) 163

And other models...

Diquark spectator

(Bacchetta, Courtoy, Radici – PRD 78 (08) 074010)

Statistical approach (Bourrely, Buccella, Soffer - PRD 83 (11) 074008

Andrea Signori - VU/Nikhef

TMD FFs - NJL-jet model

FIG. 14. The averaged transverse momentum of π and K mesons emitted by a u quark.

Matevosyan et al., P. R. D85 (12) 014021

Asaturyan et al. (E00-108), P. R. C85 (12) 015202

Flavor independent Gaussianity

Gaussian parametrization of TMD parts

$$f_1^a(x,k_{\perp}^2) = f_1^a(x) \left| \frac{1}{\pi \langle k_{\perp}^2 \rangle} \right| \exp\left\{ -\frac{k_{\perp}^2}{\langle k_{\perp}^2 \rangle} \right\}$$

$$\langle k_{\perp,\mathrm{u}}^2 \rangle = \langle k_{\perp,\mathrm{d}}^2 \rangle = \dots$$

The same variance for all the flavors!

Flavor independent Gaussianity

Gaussian parametrization of TMD parts

$$D_1^{a \to h}(z, P_{\perp}^2) = D_1^{a \to h}(z) \frac{1}{\pi \langle P_{\perp}^2 \rangle} \exp\left\{-\frac{P_{\perp}^2}{\langle P_{\perp}^2 \rangle}\right\}$$

$$\langle P_{\perp,u\to\pi^+}^2 \rangle = \langle P_{\perp,u\to\pi^-}^2 \rangle = \langle P_{\perp,u\to K^+}^2 \rangle = \int_{0.1}^{0.4} \int_{0.2}^{0.2} \int_{0.1}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^{0.2} \int_{0.2}^$$

Flavor analysis

$$\sigma(P_{hT}^2) \sim \sum_a f_1^a(x, k_\perp^2) \otimes D_1^{a \to h}(z, P_\perp^2)$$

Flavor dependent case

 $\sum_{a} \frac{1}{\pi \langle k_{\perp,a}^2 \rangle} \exp\left\{-\frac{k_{\perp}^2}{\langle k_{\perp,a}^2 \rangle}\right\} \otimes \frac{1}{\pi \langle P_{\perp,a\to h}^2 \rangle} \exp\left\{-\frac{P_{\perp}^2}{\langle P_{\perp,a\to h}^2 \rangle}\right\}$

Simplified!

Sum of Gaussian functions!

Flavor analysis

$$\sigma(P_{hT}^2) \sim \sum_{a} f_1^a(x, k_{\perp}^2) \otimes D_1^{a \to h}(z, P_{\perp}^2)$$

$$Flavor dependent case$$

$$\sum_{a} \left[\frac{1}{\pi \langle k_{\perp,a}^2 \rangle} \exp\left\{ -\frac{k_{\perp}^2}{\langle k_{\perp,a}^2 \rangle} \right\} \otimes \frac{1}{\pi \langle P_{\perp,a \to h}^2 \rangle} \exp\left\{ -\frac{P_{\perp}^2}{\langle P_{\perp,a \to h}^2 \rangle} \right\} \right]$$

in the convolution, for each flavor we get a Gaussian with width

$$\langle \boldsymbol{P}_{hT,q}^2 \rangle = z^2 \langle \boldsymbol{k}_{\perp,q}^2 \rangle + \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle$$
 Momenta
Andrea Signori - VU/Nikhef are anticorrelated!

a

Results

'Tension' in the collinear case

Values of χ^2 /d.o.f. obtained from the comparison of the HERMES multiplicities Table 2. $m_N^h(x,z,Q^2)$ with the theoretical prediction using the MSTW08LO collinear PDFs [8] and the DSS LO collinear FFs [48]. In all cases, the range $0.1 \le z \le 0.8$ was included.

TMD PDFs – without Kaons

e⁺e⁻ multiplicities

$$e^+e^- \longrightarrow h \text{ jet } X$$

Pin down the most physical flavor dependent sets looking at the spectrum in transverse momentum of e⁺e⁻ collisions

Bands of cross-sections for e+e- --> p/K+ jet X (y=0.2,z=0.6 - NLL) 0.0000010 pi+ κ+ ELIMINA dsigma/dzdydqT 0.0000001 0.00000000 0.5 1.5 2 3.5 0 1 2.5 3 4 kT²(GeV²) Andrea Signori - VU/Nikhef

Bands built out of the 200 replicas for TMD FF D₁

e⁺e⁻ multiplicities

$$e^+e^- \longrightarrow h \text{ jet } X$$

Pin down the most physical flavor dependent sets looking at the spectrum in transverse momentum of e⁺e⁻ collisions

Bands built out of the 200 replicas for TMD FF D₁

Waiting for the experimental values of these ratios ..!

