Elastic and Diffractive Proton-Proton Scattering Measurements by TOTEM at the LHC

Warsaw, 28 April - 2 May 2014

XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects

Mario Deile on behalf of the TOTEM Collaboration

Overview

- pp Elastic Scattering (7 TeV, 8 TeV)
- Coulomb-Nuclear Interference (CNI), ρ Parameter
- Total pp Cross-Section (7 TeV, 8 TeV)
- Diffractive Dissociation: Results and Analyses in Progress
- Outlook: Consolidation and Upgrade

Experimental Setup at IP5

Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger

Forward dN_{ch}/dη at 8 TeV with Displaced Vertex

run with accidentally shifted collision point along beam line ⇒ asymmetric T2 acceptance

Proton Transport and Reconstruction via Beam Optics

(x*, y*): vertex position

 (θ_x^*, θ_v^*) : emission angle: $t \approx -p^2 (\theta_x^{*2} + \theta_v^{*2})$

 $\xi = \Delta p/p$: momentum loss (elastic case: $\xi = 0$)

Product of all lattice element matrices

$$x_{RP} = L_x \Theta_x^* + v_x x^* + D_x \xi$$

$$y_{RP} = L_y \Theta_y^* + v_y y^*$$

$$D_x: \text{ effective lengths (sensitivity to scattering angle)}$$

$$v_x, v_y: \text{ magnifications (sensitivity to vertex position)}$$

$$D_x: \text{ dispersion (sensitivity to momentum loss); } D_y \sim 0$$

Reconstruction of proton kinematics = "inversion" of transport equation

Transport matrix elements depend on $\xi \rightarrow$ non-linear problem (except in elastic case!)

Excellent optics understanding needed: CERN-PH-EP-2014-066

LHC Optics and TOTEM Running Scenario

Acceptance for diffractive protons:

 $t \approx -p^2 \Theta^{*2}$: four-momentum transfer squared; $\xi = \Delta p/p$: fractional momentum loss

Diffraction:

 $\xi > \sim 0.01$

low cross-section processes (hard diffraction)

Elastic scattering: large |t|

Diffraction:

all ξ if $|t| > \sim 10^{-2}$ GeV²

Elastic scattering: low to mid |t|

Total Cross-Section

Elastic scattering: very low |t|
Coulomb-Nuclear Interference

Total Cross-Section

Elastic pp Scattering at 7 and 8 TeV: Differential Cross-Sections

$$\sqrt{s} = 8 \text{TeV}$$

E	eta^*	RP approach	\mathcal{L}_{int}	t range	Elastic
(TeV)	(m)		$(\mu \mathrm{b}^{-1})$	(GeV^2)	events
7	90	4.8 - 6.5σ	83	$7 \cdot 10^{-3} - 0.5$	1M
	90	10σ	1.7	0.02 - 0.4	14k
	3.5	7σ	0.07	0.36 - 3	66k
	3.5	18σ	2.3	2 - 3.5	10k
8	90	$6-9\sigma$	60	0.01 - 1	8M
	1000	3σ	20	$6.10^{-4} - 0.2$	0.4M
2.76	11	$5\text{-}13\sigma$		0.05-0.6	45k

[EPL 101 (2013) 21002] [EPL 96 (2011) 21002] [EPL 95 (2011) 41001]

Some Lessons on Hadronic Elastic pp Scattering

At low |t|: nearly exponential decrease:

$$B_{7TeV} = (19.89 \pm 0.27) \text{ GeV}^{-2}$$

$$B_{8TeV} = (19.90 \pm 0.30) \text{ GeV}^{-2}$$

Old trends for increasing s are confirmed:

- "shrinkage of the forward peak": minimum moves to lower |t|
- forward exponential slope B increases

TOTEM

Elastic Scattering in the Coulomb-Nuclear Interference Region

Measure elastic scattering at |t| as low as 6 x 10^{-4} GeV²:

- β * = 1000 m optics: large effective lengths L_x and L_y , small beam divergence
- RP approach to 3σ from the beam centre

 $d\sigma / dt \propto |F^{C+h}|^2 = Coulomb + interference + hadronic$

Elastic Scattering in the Coulomb-Nuclear Interference Region

$$F^{C+H} = F^{C} + F^{H}e^{i\alpha\Psi}$$

$$F^{C} = \frac{\alpha s}{t} \mathcal{F}^{2}(t)$$

- Modulus constrained by measurement: $d\sigma/dt \cong A e^{-B(t)|t|}$ $B(t) = b_0 + b_1 t + ...$
- Phase arg(FH): guidance by data difficult

Simplified West-Yennie (SWY) formula (standard in the past):

- constant slope $B(t) = b_0$
- constant hadronic phase $arg(F^H) = p_0$
- $\Psi(t)$ acts as real interference phase: $\Psi(t) = \ln \frac{B(t)}{2} + \gamma_{\text{Euler}}$

Kundrát-Lokajíček (KL) formula:

- any slope B(t)
- any hadronic phase arg(F^H)

• complex
$$\Psi(t)$$
:

$$\begin{split} \Psi(t) &= \mp \int\limits_{t_{min}}^0 dt' \ln \frac{t'}{t} \, \frac{d}{dt'} \mathcal{F}^2(t') \pm \int\limits_{t_{min}}^0 dt' \left(\frac{F^H(t')}{F^H(t)} - 1 \right) \, \frac{I(t,t')}{2\pi} \\ I(t,t') &= \int\limits_0^{2\pi} d\phi \, \frac{\mathcal{F}^2(t'')}{t''} \; , \qquad t'' = t + t' + 2\sqrt{tt'} \cos\phi \end{split}$$

Elastic Scattering in the Coulomb-Nuclear Interference Region

"central phase":

$$\arg F(t) = \frac{\pi}{2} - \operatorname{atan} \frac{\cot p_0}{1 - \frac{t}{t_d}}$$

constant phase:

$$\arg F(t) = p_0$$

"peripheral phase":

$$\arg F(t) = p_0 + p_A \exp\left[\kappa \left(\ln \frac{t}{t_m} - \frac{t}{t_m} + 1\right)\right]$$

$$\rho = \frac{\Re F^{H}(0)}{\Im F^{H}(0)} = \cot \arg F^{H}(0) = \cot p_{0}$$

Effects of Hadronic Phase on dσ/dt

(for any interference formula)

study with $\beta^* = 1000 \text{m}$ data

higher-|t| effect from functional form of phase(t), only compatible with KL interference formula

study with $\beta^* = 90 \text{m}$ data

Higher-|t| Studies with $\beta^* = 90$ m Data

Deviation of $d\sigma/dt$ from pure exponential:

extensive study of systematics (alignment, optics, beam momentum, ...)

Fit $d\sigma/dt = A e^{-B(t)|t|}$, with $B(t) = b_0$ or $B(t) = b_0 + b_1 t$ or $B(t) = b_0 + b_1 t + b_2 t^2$

Pure exponential form excluded at \sim 7 σ significance.

TOTEM

Preliminary Result for ρ

Pure exponential form ruled out

→ SWY interference formula ruled out
(cannot produce non-exponentiality)

Constant B with peripheral phase unlikely but possible (if non-exponentiality is caused entirely by peripheral phase). Under study.

 ρ from fits with different forms for B(t) and phase(t)

Phase:

central or constant

peripheral

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}^{\text{had}}$$

 σ_{total} = 101.7 ± 2.9 mb luminosity independent [PRL 111 (2013) 012001]

Synopsis of ρ Measurements

Indirect crude measurement at 7 TeV:

From optical theorem:
$$\frac{dN_{\rm el}}{dt}\Big|_{t=0} -1 = 0.009 \pm 0.056 \quad \Rightarrow |\rho| = 0.145 \pm 0.091$$

Inelastic and Total pp Cross-Section Measurements 7 TeV 8 TeV

First measurements of the total proton-proton cross section at the LHC energy of $\sqrt{s} = 7\text{TeV}$ [EPL 96 (2011) 21002]

Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21002]

Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21003]

Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21004]

A luminosity-independent measurement of the proton-proton total cross-section at $\sqrt{s} = 8 \text{ TeV}$ [Phys. Rev. Lett. 111, 012001 (2013)]

3 Ways to the Total Cross-Section

$$\sigma_{\text{tot}}^2 \propto \left[\Im F_{\text{el, had}} (t = 0) \right]^2 = \frac{1}{1 + \rho^2} \left| F_{\text{el, had}} (t = 0) \right|^2 \quad \text{with } \rho = \frac{\Re F_{\text{el, had}}}{\Im F_{\text{el, had}}} \bigg|_{t=0}$$

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1+\rho^2} \frac{d\sigma_{el}}{dt} \bigg|_{t=0}$$

7 TeV

elastic observables only:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \frac{dN_{\text{el}}}{dt} \bigg|_{0} \quad (\rho = 0.14 \text{ [COMPETE extrapol.]})$$

$$\int_{0}^{\pi} \text{June 2011 (EPL96): } \sigma_{\text{tot}} = (98.3 \pm 2.8) \text{ mb}$$

$$\int_{0}^{\pi} \text{Oct. 2011 (EPL101): } \sigma_{\text{tot}} = (98.6 \pm 2.2) \text{ mb}$$

$$\int_{0}^{\pi} \text{different beam intensities !}$$

luminosity independent:

 ϱ independent:

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} (N_{\text{el}} + N_{\text{inel}})$$

$$\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt|_0}{N_{\text{el}} + N_{\text{inel}}}$$

$$\sigma_{\text{tot}} = (99.1 \pm 4.3) \text{ mb}$$

$$\sigma_{\text{tot}} = (98.0 \pm 2.5) \text{ mb}$$

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different bunch intensities,
- different methods with different external inputs.

8 TeV: only luminosity independent method (no external lumi. meas. available) $\sigma_{tot}(8 \text{ TeV}) = (101.7 \pm 2.9) \text{ mb}$

TOTEM

TOTEM

Inelastic Cross-Section: The Unseen Low-Mass Diffractive Part

Low-mass diffraction with $\eta > 6.5$ or M < 3.4 GeV (~4% of inelastic events): outside T2 acceptance (too far forward)

Correction of inelastic measurement:

based on QGSJET-II-3 Monte Carlo:

$$\sigma_{\rm M < 3.4 \; GeV} = 3.2 \, \pm \, 1.6 \; \rm mb$$

Estimate of unseen part from the data:

$$\sigma_{\text{tot}}^{2} = \frac{16\pi}{1 + \varrho^{2}} \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_{0} \implies \sigma_{\text{inel}} = \sigma_{\text{tot}} - \sigma_{\text{el}} = 73.15 \pm 1.26 \text{ mb}$$
visible part (T1, T2):
$$\sigma_{\text{inel}, |\eta| < 6.5} = 70.53 \pm 2.93 \text{ mb}$$

$$\sigma_{\text{inel, }|\eta| > 6.5} = 2.62 \pm 2.17 \text{ mb}$$
 < 6.31 mb (95% CL)

pp Cross-Section Measurements

Ratio elastic / total:

Ongoing Analyses of Diffractive Processes: Standalone and Common Runs with CMS

- A Selection -

Single Diffraction (SD), $\approx 10 \,\text{mb}$

Double Diffraction (DD), $\approx 5 \,\text{mb}$

 \rightarrow Measure topologies and σ (M, ξ ,t)

Central Diffraction (CD), $\approx 1 \text{ mb}$

Soft Single Diffraction (SD)

- 1 proton breaks up → diffractive mass M
- 1 proton survives with momentum loss ξ
- rapidity gap $\Delta \eta$ between proton and M

$$\Delta \eta = -\ln \xi, \quad M^2 = \xi s$$

Trigger on T2, require 1 proton

2 ways for measuring ξ :

via the proton trajectory (RP):
$$x_{RP} = L_x \Theta_x^* + v_x x^* + D_x \xi$$

2. via the rapidity gap (T1, T2)

Note:
$$\eta_{\text{max,T2}} = 6.5 \Leftrightarrow M_{\text{min}} = 3.4 \text{ GeV}$$

resolution at β *=90m: $\delta \xi \sim 0.004 - 0.01$ (dependent on t, ξ)

 $\delta \xi \sim \xi$

Full differential cross-section:

TOTEM

SD Topologies for Different Mass Ranges

M =	$2 \times 10^{-7} < \xi < 1 \times 10^{-6}$	proton & opposite T2	I
3.4 – 7 GeV		T2 T1 T1 T2 RPs RPs	
M =	$1 \times 10^{-6} < \xi < 2.5 \times 10^{-3}$	proton & opposite T1 + T2	
7 – 350 GeV		T2 T1 IS T1 T2 RPs RPs An	$= -\ln \frac{M^2}{s}$
M =	$2.5 \times 10^{-3} < \xi < 2.5 \times 10^{-2}$	proton & opposite T2 (+ T1) & same side T1	S
0.35 – 1.1 TeV		T2 T1 S T1 T2 RPs RPs	
M > 1.1 TeV	$\xi > 2.5 \times 10^{-2}$	proton & opposite T2 (+ T1) & same side T2 (+ T1) RPS RPS RPS	
		Mario Deile	e – p. 22

SD for Different Mass Ranges (7 TeV Data)

Work in progress!
Missing corrections:

- class migrations
- ξ resolution, beam divergence effects

estimated uncertainties:

 $\delta\sigma/\sigma \sim 20 \%$ $\delta B/B \sim 15 \%$

very preliminary:

$$\begin{split} &\sigma_{\text{SD}}{=}~6.5\pm1.3~\text{mb} \\ &(3.4<\text{M}_{\text{diff}}<1100~\text{GeV}) \end{split}$$

Soft Double Diffraction

- Both protons break up
- \rightarrow 2 diffractive masses M₁, M₂
- Central rapidity gap

Ultimate goal: 2-dim. cross-section

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} M_1 \, \mathrm{d} M_2}$$
 or $\frac{\mathrm{d}^2 \sigma}{\mathrm{d} |\eta|_{\min 1} \, \mathrm{d} |\eta|_{\min 2}}$

Difficulties:

- no leading protons to tag
- for large masses (> small central gap) not easy to separate from non-diffractive events

First step: sub-range with particles triggering both T2 hemispheres, veto on T1:

$$4.7 < |\xi|_{\text{min},1/2} < 6.5 \qquad \text{or} \qquad 3.4 \text{ GeV} < M_{1/2} < 8 \text{ GeV}$$

$$\text{RPs}$$

$$\eta = 6.5$$

$$\text{Event selection with high DD purity (~ 70 %)}$$

Double Diffraction: Results at 7 TeV

Partial 2-dim. cross-section in 2 x 2 bins:

	$-4.7 > \eta_{\min} > -5.9$	$-5.9 > \eta_{\min} \ge -6.5$
4.7<η _{min} ≤5.9	65±20 μb	26±5 μb
5.9<η _{min} _{6.5}	27±5 μb	12±5 μb

Sum:

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 116 \pm 25 \text{ }\mu b$$

[PRL 111 (2013) 262001]

Leading systematics:

- missing DD events with unseen particles at $\eta < \eta_{min}$
- backgrounds from non-diffractive, single diffractive, central diffractive events

So far, only a small part of DD measured: 116 µb out of ~5 mb, but:

benchmark for Monte Carlos:

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 159 \text{ }\mu b$$

$$\sigma_{DD(4.7 < |\eta_{min}| < 6.5)} = 101 \text{ }\mu b$$

Improvement expected with 8 TeV data: also CMS detector information available (joint run).

Central Diffraction ("Double Pomeron Exchange")

- both protons survive with momentum losses $\xi_1, \, \xi_2$
- diffractive mass M in the centre
- 2 rapidity gaps $\Delta \eta_1$, $\Delta \eta_2$

$$\Delta \eta_{1,2} = -\ln \xi_{1,2}, \quad M^2 = \xi_1 \xi_2 s$$

Joint data taking CMS + TOTEM:

kinematic redundancy between protons and central diffractive system

$$M_{CMS} = M_{TOTEM}(pp)$$
 ?

Central Diffraction ("Double Pomeron Exchange")

Soft DPE: study differential cross-section with correlations:

$$\frac{\mathrm{d}^5 \, \sigma}{\mathrm{d} \, \xi_1 \, \mathrm{d} \, \xi_2 \, \mathrm{d} \, t_1 \, \mathrm{d} \, t_2 \, \mathrm{d} \, \Delta \Phi}$$

(in progress: $d\sigma/dM$, $d\sigma dt_1$)

Single arm CD event rate (integrated ξ , acceptance corrected)

Estimate on the integral:

$$\sigma_{\rm CD} \sim 1 \text{ mb}$$

Central Production of Particles or Di-Jets (with CMS)

TOTEM

Exclusive Particle Production:

$$M_{\mathbf{X}}^2 = \xi_1 \xi_2 s$$

$$y_{\mathbf{X}} = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$$

Joint analysis of special run at 8 TeV, β * = 90 m, in progress:

- central-diffractive jet production
- low-mass resonances $(\pi\pi, \pi\pi\pi\pi, ...)$
- missing/escaping mass

TOTEM Consolidation and Upgrade Programme

In 2012: successful data taking together with CMS in special runs

→ first studies of central production, diffractive dijets, other hard diffractive processes

Problems: limited statistics, pileup

- →upgrade RP system for operation at higher luminosities
- →resolve event pileup: timing measurement, multi-track resolution

Backup

Elastic pp Scattering: Event Topology and Hit Maps

Two diagonals analysed independently

Elastic Tagging

Selection cuts:	number	cut	RMS	
	diagonal	track reconstructed in all	4 diagonal RP	S
	1	$\theta_x^{*R} - \theta_x^{*L}$	9.2 μrad 3.5 μrad	collinearity
	2	$ heta_{ m y}^{*{ m R}}- heta_{ m y}^{*{ m L}}$	$3.5\mu\mathrm{rad}$	Commeanty
	3	$ x^{*R} $	$200 \mu \mathrm{m}$	
	4	$ x^{*L} $	$200\mu\mathrm{m}$	> low ξ
	5	$\alpha y^{R,N} - (y^{R,F} - y^{R,N})$	$17 \mu \mathrm{m}$	
	6	$\alpha y^{L,N} - (y^{L,F} - y^{L,N})$ $x^{*R} - x^{*L}$	$17 \mu \mathrm{m}$	J
	7	$x^{*R} - x^{*L}$	9µm	common vertex for both protons

Example: elastic collinearity: Scattering angle on one side versus the opposite side

Width of correlation band in agreement with beam divergence (~ 2.4 μrad)

Absolute Luminosity Calibration

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el} + N_{inel})^2}{(dN_{el}/dt)_{t=0}}$$

7 TeV

June 2011: $\mathcal{L}_{int} = (1.65 \pm 0.07) \,\mu b^{-1}$ [CMS: $(1.65 \pm 0.07) \,\mu b^{-1}$]

October 2011: $\mathcal{L}_{int} = (83.7 \pm 3.2) \ \mu b^{-1}$ [CMS: $(82.0 \pm 3.3) \ \mu b^{-1}$]

Excellent agreement with CMS luminosity measurement.

Absolute luminosity calibration for T2

Different LHC Optics

Hit maps of simulated diffractive events for 2 optics configurations (labelled by β^* = betatron function at the interaction point)

 $L_x = 1.7$ m, $L_y = 14$ m, $D_x = 8$ cm diffractive protons: mainly in **horizontal** RP elastic protons: in vertical RP near $x \sim 0$ sensitivity only for large scattering angles $\beta^* = 90 \text{ m}$ (special development for RP runs)

 $L_x = 0$, $L_y = 260$ m, $v_y = 0$, $D_x = 4$ cm diffractive protons: mainly in **vertical** RP elastic protons: in narrow band at $x \approx 0$, sensitivity for small vertical scattering angles

$$\beta^* \sim 0.5 - 3.5 \text{ m}$$
 $\beta^* = 90 \text{ m}$

$$\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}}$$
 small large

Angular beam divergence

$$\sigma(\Theta_{x,y}^*) = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}} \quad \text{large} \quad \text{small}$$

Min. reachable |t|

$$|t_{\min}| = \frac{n_{\sigma}^2 p \varepsilon_n m_p}{\beta^*} \sim 0.3-1 \text{ GeV}^2$$

TOTEM

Systematic Errors on $d\sigma/dt$ at β *=90m


```
alignment:
shift in \vartheta_r^*
alignment:
shift in \vartheta_v^*
alignment:
xy tilt
optics:
\vartheta_{x,y}^* scaling – mode 1
optics:
\theta_{x,y}^* scaling – mode 2
beam momentum offset
3-out-of-4 efficiency correction:
slope uncertainty
"divergence acceptance correction":
uncertainty of beam divergence RMS
"divergence acceptance correction":
uncertainty due to possible left-right asymmetry
"divergence acceptance correction":
uncertainty due to beam divergence non-gaussianity
unfolding correction:
uncertainty of \vartheta_x^* smearing RMS
\pm 1 \sigma envelope
```

Charged Particle Pseudorapidity Density dN / dη

 $dN_{ch}/d\eta$: mean number of charged particles per event and per unit of pseudorapidity: primary particles only, i.e. lifetime > 30 ps (convention among LHC experiments)

- probes hadronisation \rightarrow constrains phenomenological models used in event generators
- input for cosmic ray simulations

7 TeVTOTEM standalone (T2)

8 TeV CMS + TOTEM (T2)

analysis of **same** T2-triggered events (>90% of inelastic)

CMS FSQ -12-026, TOTEM-2014-02

Central & Forward dN_{ch}/dη @ 8 TeV (with CMS)

"Single diffractive (SD) enhanced":

"Non-Single diffractive (NSD) enhanced":

≥ 1 primary charged particle in each T2 arm

- Multiplicity of SD events significantly smaller than NSD (as expected)
- No MC able to describe $dN_{ch}/d\eta$ of all event samples & in the whole rapidity region (especially SD-enhanced problematic, description of central-forward correlations?)