

Forward–Central Jet Correlations in *pp* Collisions at CMS

Pedro Cipriano, on behalf of the CMS Collaboration DESY (Deutsches Elektronen-Synchrotron)

> DIS 2014 - Warsaw, Poland 30th April 2014

CMS PAS FSQ-12-008 http://cms-physics.web.cern.ch/ cms-physics/public/FSQ-12-008-pas.pdf

Motivation Physics Selection and Observables Uncertainties

Forward–Central Jet Correlations

Figure: Feynman diagram for central–forward jet production

- Forward–Central Jet Correlations
 - Probe simultaneously the high and low-x regions / quark and gluon-ladders
- Large η difference between jets
 - Open up phase space for higher-order emissions \rightarrow high sensitivity to QCD and parton dynamics
- Azimuthal correlations ($\Delta \phi$)
 - Study evolution of $\Delta\phi$ correlations as function of rapidity separation of jets
 - DGLAP: stronger correlations
 - BFKL: weaker correlations
- The study of an extra jet inside or outside helps to understand the parton ladder
- Sensitivity to underlying event and multi-parton interactions

Motivation Physics Selection and Observables Uncertainties

Physics Selection

Data

• 3.2 pb⁻¹ from 2010 low pile-up *pp* collisions at $\sqrt{s} = 7$ TeV

Physics selection

• Events with at least one forward $(3.2 < |\eta| < 4.7)$ and at least one central $(|\eta| < 2.8)$ jet with $p_T > 35$ GeV

Different scenarios

- $\ 20 \ \ \frac{\text{Inside-jet veto scenario}}{(p_{\mathcal{T} \ inside} < 20 \ \text{GeV})}$
- $\frac{\text{Inside-jet tag scenario}}{(p_{T inside} > 20 \text{ GeV})}$
- Outside-jet tag scenario (p_{T outside} > 20 GeV)

Figure: Diagrams for the different scenarios

Motivation Physics Selection and Observables Uncertainties

Uncertainties

- Correlated Uncertainties
 - Represented as error band
 - Jet Energy Scale
 - Luminosity (±4%)
 - Trigger Inefficiency (+1%)
- Uncorrelated Uncertainties
 - Represented as error bar
 - Statistical
 - Model Dependence
 - Pileup Estimation (± 1%)

Figure: Total uncertainty for $\Delta \phi$ (up) and p_T^{inside} (down)

Inclusive scenario Inside-jet veto scenario Inside-jet tag scenario

Inclusive scenario

Inclusive scenario Inside-jet veto scenario Inside-jet tag scenario

Results - $\Delta \phi$ inclusive scenario

- Data fully corrected to hadron level
- $\Delta \phi$ is a steeply growing distribution
- All MC models describe the distribution reasonably well, except for the lower $\Delta\phi$ region
- HERWIG++ has the best overall description
- PYTHIA 6 Z2* without MPI deviates more from data than other PYTHIA 6 tunes

Figure: $\Delta \phi$ in inclusive scenario compared with different MCs

roduction Inclusive scenario Results Inside-jet veto sce Summary Inside-jet tag sce

Results - $\Delta \phi$ inclusive scenario in slices of $\Delta \eta$

- At large $\Delta\eta$ there is more phase space for additional radiation
- At small $\Delta \eta$ the distribution is falling much more steeply than at large rapidity separation (from 2 to 2.5 orders of magnitude)
- In general the MC describe this effect, except for the lower $\Delta\phi$ region
- HERWIG++ provides the best overall description
- PYTHIA 6 Z2* without MPI deviates event more from data than other PYTHIA 6 tunes for the lower $\Delta \phi$ region

Inclusive scenario Inside-jet veto scenario Inside-jet tag scenario

Inside-jet veto scenario

roduction Inclusive scenario Results Inside-jet veto scenario Summary Inside-jet tag scenario

Results - $\Delta \phi$ inside-jet veto scenario

- The correlation is stronger than in the inclusive scenario
- PYTHIA deviates more from data in the inclusive scenario while HERWIG describes it better for lower $\Delta \phi$
- The best description is provided by HERWIG++
- PYTHIA 6 Z2* without MPI deviates from both data and other tunes for lower $\Delta \phi$, having too strong correlation

Figure: $\Delta \phi$ in inside-jet veto scenario compared with MC predictions

roduction Inclusive scenario Results Inside-jet veto scenario Summary Inside-jet tag scenario

Results - $\Delta \phi$ inside-jet veto scenario in slices of $\Delta \eta$

- In the inside-jet veto scenario, the slopes are steeper (3 orders of magnitude)
- The correlation shape has no significant variation with $\Delta\eta$
- HERWIG++ gives the best description
- For lower $\Delta \phi$ region PYTHIA 6 Z2* without MPI is one order of magnitude away from the data

Inclusive scenario Inside-jet veto scenario Inside-jet tag scenario

Inside-jet tag scenario

Inclusive scenario Inside-jet veto scenario Inside-jet tag scenario

Results - Leading inter-leading jet p_T

- The MC models describe the data reasonably well at low p_T
- PYTHIA 6 $Z2^*$ without MPI shows a deficit for the lower p_T region
- PYTHIA 6 P11 provides the best prediction
- Figure: Leading inter-leading jet p_T compared with MC predictions

roduction Inc Results Insi Summary Insi

ary Inside-jet veto scenario Inside-jet tag scenario

Results - $\Delta \phi$ inside-jet tag scenario

- The correlation is weaker than in the inclusive scenario
- Most predictions seem to yield a reasonable shape but fail slightly in the normalization
- The best description is provided by ${\rm HerWiG}{++}$
- $\bullet\ PYTHIA\ 6$ $Z2^*$ without MPI predicts a much lower cross-section than observed

Figure: $\Delta \phi$ in inside-jet tag scenario compared with different MCs

roduction Inclusive scenario Results Inside-jet veto scenario Summary Inside-jet tag scenario

Results - $\Delta \phi$ inside-jet tag scenario in slices of $\Delta \eta$

- The slope decreases as function of $\Delta \eta$ (2 to 1.5 orders of magnitude)
- The correlation is much weaker that in the inside-jet veto scenario
- HERWIG++ yields the best description
- $\bullet~{\rm PYTHIA}~6$ $Z2^*$ without MPI fails both in slope and normalization

Scenarios Comparison

Summary

- For the first time azimuthal correlations are measured in different scenarios, for different rapidity separation, and compared with different Monte Carlo predictions; p_T and η -derived variables are also measured.
- \bullet Suprisingly DGLAP MCs describe the observables very well
- BFKL will be added soon
- Overall HERWIG performs better than $\rm Pythia$ and the best description in provided by $\rm HERWIG++$
- PYTHIA 6 $Z2^*$ with MPI decribes the data better than PYTHIA 6 $Z2^*$ without MPI

THANKS FOR YOUR ATTENTION