b-CGC versus IP-Sat and combined HERA data

A. H. Rezaeian

Universidad Tecnica Federico Santa Maria, Valparaiso

XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2014, Warsaw)
Motivation, introduction to saturation (b-CGC and IP-Sat model)
The importance of impact-parameter dependence of dipole amplitude.
Confronting the b-CGC and IP-Sat models with the recent H1+ZEUS combined data for σ_r, and also $F_2, F_2^{c\bar{c}}, F_L$, exclusive diffractive & DVCS data.
Conclusion

This talk is mainly based on:

See also:
Both DGLAP and BFKL are linear evolution equations: exponential growth of the gluon distributions at small-x

- **Linear \Rightarrow unstable growth of the gluon distribution!**
Growth of the gluon distribution at small-\(x\), where do gluons go?

Unitarity or Froissart bound: \(\sigma_{\text{tot}} < c \ln^2(s)\): Gluon saturation at small-\(x\)
Charged hadron multiplicity does not change more than a factor $2 \div 4$ even gluon density increased more than an order of magnitude from RHIC to the LHC.
High energy/density: recombination processes \implies saturation:
The number of partons created at a given step depends non-linearly on the number of partons present previously.

Nonlinear \implies stable fixed point at high energy!
Unitarity, black disk limit and saturation

Connection between unitarization and saturation:

\[\gamma^* \rightarrow \gamma^* \]

\[\text{proton} \]

\[N(x, r, b) \approx \alpha_s r^2 \frac{xG(x, 1/r^2)}{\pi R^2} \equiv \alpha_s n(x, Q^2 \sim 1/r^2) \]

Strong scattering \(N \sim 1 \iff \) High gluon density \(n \sim 1/\alpha_s \implies \) gluon saturation

To preserve unitarity \(\iff \) Multiple scattering is important: \((\alpha_s n)^n \sim 1 \)
Dilute regime: Bjorken limit in QCD

\[s \to \infty; \ Q^2 \to \infty; \ x \approx Q^2/s = \text{fixed} \]

Dense regime: Regge limit in QCD

- **IP-Sat:** probing the saturation from the DGLAP region.
- **b-CGC:** probing the saturation from the BFKL region.

\[s \to \infty; \ x \to 0; \ Q^2 = \text{fixed} \]
Unified description of inclusive & exclusive processes in color-dipole factorization

Exclusive diffractive process: \(\psi_{q\bar{q}} \otimes \phi_{q\bar{q}} \otimes N^{q\bar{q} - p} \)

\[
A^{\gamma^* p \to \gamma_p (x, Q, \Delta)} = 2i \int d^2r \int_0^1 dz (\Psi^* \Psi)_{T, L} \int d^2b \ e^{-i[b-(1-z)r] \cdot \Delta} N(x, r, b)
\]

\[
\frac{d\sigma_{T, L}^{\gamma^* p \to Ep}}{dt} = \frac{1}{16\pi} \left| A^{\gamma^* p \to Ep}_{T, L} \right|^2, \quad t = -\Delta^2
\]

- With corrections from the real part of the amplitude and skewedness effect \(x \neq x' \)
- \((b \to 1/|t|)\): \(t \)-distributions access impact-parameter distribution of interactions

Inclusive deep-inelastic scattering (DIS): \(\psi_{q\bar{q}} \otimes \psi_{q\bar{q}} \otimes N^{q\bar{q} - p} \)

\[
\sigma_{L, T}^{\gamma^* p}(Q^2, x) = \text{Im} A_{T, L}^{\gamma^* p \to \gamma^* p(x, Q, \Delta = 0)}
\]

\[
= 2 \int d^2r \int_0^1 dz |\Psi_{L, T}(r, z; Q^2)|^2 \int d^2b N(x, r, b)
\]

- DIS is less sensitive to the \(b \)-dependence compared to exclusive diffractive process.
Impact-Parameter dependent Saturation (IP-Sat) model

- Kowalski, Teaney [hep-ph/0304189]
- Kowalski, Motyka, Watt [hep-ph/0606272]
- Rezaeian, Siddikov, Van de Klundert, Venugopalan [arXiv:1212.2974]

- Eikonalized DGLAP-evolved gluon density with Gaussian b-dependence (Glauber-Mueller amplitude):

\[
N(x, r, b) = 1 - \exp \left(-\frac{\pi^2 r^2}{2N_c} \alpha_s(\mu^2) xg(x, \mu^2) T_G(b) \right)
\]

\[
T_G(b) = \frac{1}{2\pi B_G} \exp \left(-\frac{b^2}{2B_G} \right)
\]

- Initial gluon distribution with a scale running with dipole size:

\[
xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1 - x)^{5.6} \quad \mu^2 = C/r^2 + \mu_0^2
\]
Impact-parameter dependent Color Glass Condensate (b-CGC) model

- Watt, Kowalski [arXiv:0712.2670]
- Rezaeian, Schmidt [arXiv:1307.0825]

\[N(x, r, b) = \begin{cases}
N_0 \left(\frac{r Q_s}{2} \right)^{2\gamma_{\text{eff}}} & r Q_s \leq 2, \\
1 - \exp \left(-A \ln^2 (B r Q_s) \right) & r Q_s > 2
\end{cases} \]

Effective anomalous dimension and the saturation scale are defined as

\[\gamma_{\text{eff}} = \gamma_s + \frac{1}{\kappa \lambda Y} \ln \left(\frac{2}{r Q_s} \right), \]

\[Q_s \rightarrow Q_s(x, b) = \left(\frac{X_0}{x} \right)^{\frac{1}{2}} \exp \left\{ -\frac{b^2}{4\gamma_s B_{\text{CGC}}} \right\} \text{GeV} \]
IP-Sat and b-CGC models updated with the combined HERA data

- 4(5) free parameters in IP-Sat (b-CGC) models:
 - B_G (B_{CGC}) is fixed from t-slope of exclusive J/Ψ production;
 - Other parameters are fixed by DIS combined data for σ_r for $x \leq 0.01$ and $Q^2 \in [0.75, 650]\text{GeV}^2$.

- Data for F_2, F_L and $F_2^{c\bar{c}}$, exclusive diffractive (for ρ and ϕ) and DVCS are NOT included into the fit, but are predictions of the models.

old v. new fit obtained from combined H1+ZEUS data

- Old IP-Sat and b-CGC parameters & combined σ_r data: $\chi^2/d.o.f \approx 3$ → parameters of new fit are different with $\chi^2/d.o.f \approx 1$:
 - Old IP-Sat: $m_{u,d,s} = 50 - 100\text{ MeV}$, and $\lambda_g < 0$.
 - New IP-Sat: $m_{u,d,s} = 0$, and $\lambda_g > 0$ → makes more sense at small-x!
Slope of t-distribution of exclusive processes, a unified picture

\[\frac{d\sigma}{dt} \approx e^{-B_D |t|} \quad \text{(large } Q^2) \quad \iff \quad Q_s^2(x, b) \approx Q_s^2(x) e^{-b^2/2B_D} \]

Supported by data and used in both b-CGC and IP-Sat models in dilute region.

- At a fixed Q^2, the typical dipole size is bigger for lighter vector meson \Rightarrow validity of the above asymptotic expression is postponed to a higher Q^2.
- Universality of extracted impact-parameter distribution of the proton.
 \textit{t-slope B_D gives the width of saturation scale distribution in proton.}
The typical impact-parameter probed in the total $\gamma^* p$ cross-section is about \(b \approx 2 \div 3 \text{ GeV}^{-1} \) \(\Rightarrow \) Importance of b-dependence.

The typical dipole-size in the interaction depends on \(Q^2 \) (strongly), and \(x \) for a fixed \(b \): A larger \(Q^2 \) \(\rightarrow \) smaller \(r \).
Saturation scale of Proton extracted from combined HERA data: IP-Sat v. b-CGC

- $Q_s(x, b) < 1$ GeV at HERA kinematics.
- The power-law behavior of $Q_s^2 \approx x^{-\lambda}$ changes from $\lambda \approx 0.3$ (central) to $\lambda \approx 0.1$ (peripheral).
- Order of magnitude discrepancies in saturation scale extracted from different models \Rightarrow sizable uncertainties in predictions of various observables.
- Current small-x data do not put enough constrains on saturation models.
$F_{c\bar{c}}$, F_2 data were not included in the fit.

The difference among models can be considered as our current theoretical uncertainties \Rightarrow significant uncertainties at small-x \Rightarrow Future exps with $x_B < 10^{-5}$ (LHeC, EIC) can constrain saturation models.
IP-Sat v. b-CGC description of HERA data

FL and F2 data were not included in the fit.
Two models give rather different t-distribution at large t.

- Large t corresponds to small b: saturation scale are different in these two models at very small x for central collisions.

See my afternoon talk in ”Future experiments session”

- t-dependence is described by $\sim \exp(-B_D t)$ at low-t, B_D depends on Q^2, W and M^2.

A. H. Rezaeian (USM & CCTVal)
The slope of the t-distribution of exclusive diffractive processes, IP-Sat v. b-CGC

In the b-CGC model, there are non-trivial correlations between b and $x \rightarrow W$ dependence of B_D.
The W-dependence of the cross-section follows a power-law behavior
\[\sigma \sim W^\delta \rightarrow \text{Indication of geometric scaling in diffractive data.} \]
Total J/ψ cross-section as a function of $W_{\gamma p}$

Armesto and Rezaeian, arXiv:1402.4831, See also my talk in WG7, Tue

![Graph showing cross-section as a function of $W_{\gamma p}$]

- The LHCb 2014 data are in favour of the CGC/Saturation predictions.
- The t-distribution of diffractive photoproduction of vector mesons at large $|t|$ can discriminate among models.
Conclusion:

- Both the b-CGC and the IP-Sat models give generally good description of all HERA data at $x \leq 0.01$ including combined HERA data:
 - Universality (consistence) of saturation picture even though the details of two models are different:
 - $Q_s(x, b) < 1$ GeV at HERA kinematics.
 - The typical impact-parameter probed in the total $\gamma^* p$ cross-section is about $b \approx 2 \div 3$ GeV$^{-1}$.
 - Two models are different at very small x and large $|t|$ ($x < 10^{-5}$ and $|t| > 1$).
 - The recent LHCb data (2014) in p+p collisions for exclusive diffractive photoproduction of J/Ψ is favour of CGC/saturation predictions.