A_N in inclusive lepton-proton collisions

Umberto D’Alesio
Physics Department & INFN
University of Cagliari, Italy

XXII International Workshop on
Deep-Inelastic Scattering and Related Subjects (DIS2014)
Warsaw 28 Apr.-2 May 2014

based on work in collaboration with
M. Anselmino, M. Boglione, S. Melis, F. Murgia, and A. Prokudin
Outline

- Transverse Single Spin Asymmetries (SSA): single- vs. two- scale processes
 \(pp \rightarrow hX \) vs. \(\ell p \rightarrow \ell' h, X \) (SIDIS)

- TMD approach: factorization and universality?

- SSAs in \(\ell p \rightarrow hX \): a bridge or a testing ground of the TMD scheme
 - role of kinematics and dynamics
 - use of TMDs extracted from SIDIS fits

- Recent HERMES results: a comparison

- Predictions for future experiments

- Conclusions
SSAs and theoretical approaches in QCD

single scale process: \(pp \rightarrow hX \) \(A_N = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} \)

- sizeable over a huge energy range (FermiLab...RHIC)
- subleading SSA

- **Twist-3 approach** [Efremov-Teryaev, Qiu-Sterman, Koike-Kanazawa, Kang et al.]
 - collinear factorization established
 - universal \(T_F(x, x) \) quark-gluon correlator, related to the TMD Sivers function
 - \(T_F \) from the Sivers function leads to \(A_N \) opposite in sign w.r.t. data
 - update: \(A_N \) dominated by a twist-3 term in the fragm. [Kanazawa et al. 2014]

- **TMD scheme** (generalization of the parton model with \(k_\perp \)) [Anselmino et al.]
 - factorization (and universality) assumed
 - rich and successful phenomenology

\(A_N \) in inclusive lepton-proton...
two-scale processes (SIDIS, DY, e^+e^-): large Q^2 and small P_T

- leading SSA
- TMD factorization proved
- equivalence with twist-3 approach in one-scale regime
- modified universality: change of sign of T-odd TMDs from SIDIS to DY (to be tested)
- SIDIS extraction of the Sivers and Collins functions (and transversity distribution)
- recent studies with proper scale evolution
\[\ell p \rightarrow h + X \text{...a bridge} \]

no detection of the final lepton!

<table>
<thead>
<tr>
<th></th>
<th>(\ell p \rightarrow h + X)</th>
<th>(\ell p \rightarrow \ell' h + X)</th>
<th>(pp \rightarrow h + X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scales</td>
<td>(P_T)</td>
<td>(Q^2, P_T)</td>
<td>(P_T)</td>
</tr>
<tr>
<td>hard scale</td>
<td>(P_T)</td>
<td>(Q^2)</td>
<td>(P_T)</td>
</tr>
<tr>
<td>TMD fact.</td>
<td>assumed</td>
<td>proven</td>
<td>assumed</td>
</tr>
<tr>
<td>c.m. frame</td>
<td>(\ell p)</td>
<td>(\gamma^* p)</td>
<td>(pp)</td>
</tr>
<tr>
<td>subprocesses</td>
<td>(\ell q)</td>
<td>(\ell q)</td>
<td>(qq, qg, gg)</td>
</tr>
<tr>
<td>channels</td>
<td>(t)</td>
<td>(t)</td>
<td>(t, u, s)</td>
</tr>
</tbody>
</table>

Detailed phenomenology [Anselmino, Boglione, UD, Murgia, Melis, Prokudin 10 & 14]

- Analogous/complementary study [She, Mao, Ma 08]
- Twist-3 approach [Kang et al 11]
Kinematics and hard scattering region

partonic subprocess at LO: \(q\ell \rightarrow q\ell \)

\[
d\hat{\sigma}^{q\ell \rightarrow q\ell} \simeq \frac{1}{\hat{t}^2} \quad \hat{t} = (p_q' - p_q)^2 \equiv -Q^2
\]

hard scattering \(\Leftrightarrow \) large \(|\hat{t}| \) (\(\geq 1 \text{ GeV}^2 \))

TMD factorization scheme at large \(P_T \) [assumed as in \(pp \rightarrow h + X \)]:

\[
d\sigma^{p\ell \rightarrow hX} = \sum_q f_{q/p}(x, k_\perp; Q^2) \otimes d\hat{\sigma}^{q\ell \rightarrow q\ell} \otimes D_{h/q}(z, p_\perp; Q^2)
\]

TMD: \(p_q \simeq xp + k_\perp, \quad p_h \simeq zp'_q + p_\perp \)
Kinematical regions

- high statistics at low P_T (around 0.5 GeV)
 ⇒ dominated by quasi-real photon exchange ⇒ OUT of pQCD regime
- consider larger P_T values and proper forward/backward proton hemisphere

large scattering angles: $|t|_{\text{min}} \sim 1 \text{ GeV}^2$

$[\sqrt{s} \sim 5-10 \text{ GeV}]$

<table>
<thead>
<tr>
<th>P_T</th>
<th>collinear</th>
<th>TMD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forward</td>
<td>backward</td>
</tr>
<tr>
<td>1 GeV</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>2 GeV</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Note: under the assumption of no hard gluon emission
TMD approach to $p \ell \rightarrow h X$:

$$A_N = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{2d\sigma^{\text{unp}}}$$

$$d\sigma^\uparrow - d\sigma^\downarrow = \sum_q \left\{ \Delta^N f_{q/p}^\uparrow \cos \phi_q \otimes d\hat{\sigma} \otimes D_{h/q} \right\} \text{ Sivers effect}$$

$$+ \ h_{1q/p}^q \otimes d\Delta\hat{\sigma} \otimes \Delta^N D_{h/q}^\uparrow \cos \phi_C \quad \text{Collins effect I}$$

$$+ \ h_{1Tq/p}^q \otimes d\Delta\hat{\sigma} \otimes \Delta^N D_{h/q}^\uparrow \cos(\phi_C - 2\phi_q) \right\} \text{Collins effect II}$$

$$d\hat{\sigma} \simeq e_q^2 \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} \quad d\Delta\hat{\sigma} \simeq -e_q^2 \frac{\hat{s}\hat{u}}{\hat{t}^2}$$

$$\phi_C \equiv \phi_h^H + \phi_{q'}^H \ [\phi_h^H \text{ hadron azimuthal angle in } p'_q \text{ helicity frame, Collins effect}]$$

A_N in inclusive lepton-proton ...
Single plane (w.r.t. two planes in SIDIS):
\[
\sin(\phi_h \pm \phi_S) \text{ not measurable} \Rightarrow \text{No separation of effects:}
\]
\[
\Rightarrow \text{hopeless???? Not really:}
\]
- single partonic channel: clear
- \(t \)-channel: \(\hat{t} \) strongly dependent on \(\phi_q \) (Sivers azimuthal dependence)
- backward region (small \(\hat{u} \)):
 - moderately large \(Q^2 \) (ok pQCD)
 - absence of \(u \)-channel (with \(\hat{u} \) almost independent on \(\phi_q \))
 * Sivers effect still active
 * Collins effect strongly suppressed
 - \(p^+p \rightarrow \pi X \): all spin-TMD effects in \(A_N \) strongly suppressed
Unified picture

- use of Sivers and Collins functions (and transversity) from fits to SIDIS and e^+e^-:

1. SIDIS 1:
 - FFs from Kretzer 2000;
 - Sivers functs. for up and down quarks [Anselmino et al, 05]
 - first extraction of transversity [Anselmino et al. 07]

2. SIDIS 2:
 - FFs from de Florian-Sassot-Stratmann 07;
 - Sivers functs. with sea quarks [Anselmino et al. 09]
 - updated h_1 [Anselmino et al. 09]

 • Some differences in the SIDIS unconstrained large x region for the Sivers and transversity functions (crucial in A_N in pp collisions)
 • well representative of the uncertainties in the available extractions
 • Envelope of the statistical uncertainty bands
Kinematics vs. HERMES setup

\[
A_N = \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow}
\]

\[
A(\phi_S, S_T) = S_T \cdot (\hat{p} \times \hat{P}_T) A_N = S_T \sin \phi_S A_N
\]

HERMES:

\[
d\sigma = d\sigma_{UU}[1 + S_T \sin \psi A_{UT}^{\sin \psi}]
\]

\[
\sin \psi = \hat{S}_T \cdot (\hat{P}_T \times \hat{k}) \text{ and } \hat{k} = -\hat{p}
\]

HERMES configuration: left and right interchanged but defined looking downstream w.r.t. opposite directions (lepton vs. proton) → only a sign change in \(x_F\): \(x_F > 0\) means backward proton hemisphere.

\[
A_{UT}^{\sin \psi}(x_F, P_T)_{\text{HERMES}} = A_N^{p^\uparrow \ell \rightarrow hX}(-x_F, P_T)
\]

\(A_N\) in inclusive lepton-proton ...
Results

• Fully inclusive case
 – one large scale $P_T \simeq 1$ GeV $\to Q^2 \geq 1$ GeV2 BACKWARD proton hemisphere
 – only one HERMES bin with $\langle P_T \rangle \simeq 1$ GeV

• lepton-tagged or SIDIS category
 – subsample with detection of the final lepton (low rates)
 – $Q^2 > 1$ GeV2 (plus usual SIDIS cuts on x_B, z_h, y, W^2)
 – extra cut: $P_T > 1$ GeV [ℓp c.m. frame]
 SIDIS azimuthal asym. $P_T < 1$ GeV [$\gamma^* p$ c.m. frame] to access intrinsic k_\perp.
 Note: in $\ell p \to h X$ the final P_T comes also from the hard scattering

*HERMES data: PLB 728 (2014)
Collins effect suppressed: azimuthal phase integration and dynamics

Sivers effect sizeable:
 - backward region but only t channel, and moderate $Q^2 = |\hat{t}| \rightarrow$: Sivers azimuthal phase active in the hard scattering
 - backward hemisphere but valence region ($\sqrt{s} \simeq 7$ GeV and $P_T = 1$ GeV)
 - π^-: role of up quark Sivers function coupled to non-leading FF

\[A_N \text{ in inclusive lepton-proton ...} \]
Fully inclusive case: SIDIS 2

- π^+ similar to SIDIS 1
- π^- dominated by negative down quark Sivers function (w.r.t. SIDIS 1)
• Collins effect only partially suppressed (Collins phase picks to -1)
• Sivers effect sizeable (cancelation in π^- due to the large role of up quark)
Collins effect: larger w.r.t. SIDIS 1 (transversity unsuppressed at large x)
Sivers effect: no cancelation in π^- (same large x behaviour of up and down quarks)
Predictions: JLab 12

\[
p^+ \rightarrow \pi^+ X \quad \text{SIDIS 1, JLab 12}
\]

\[
p^- \rightarrow \pi^- X \quad \text{SIDIS 1, JLab 12}
\]
Predictions at large energies

- Look for a behaviour similar to A_N in $p^\uparrow p \rightarrow \pi X$
- To facilitate the comparison: p^\uparrow along $+Z_{cm}$, i.e. forward region $\equiv x_F > 0$
- Use of SIDIS 1 (better agreement with STAR data *Boglione-UD-Murgia 08*)

Notice: here $Q^2 > 1 \text{ GeV}^2$ also in the forward region
Comments

- **Collins effect**
 - suppressed in the backward region: azimuthal phase integration
 - small in the forward region even if the Collins phase is active

- **Sivers effect**
 - suppressed in the backward region: one channel but large Q^2 are not sensitive to the Sivers phase
 - sizeable and increasing in the forward region
 - similar behaviour as for A_N in $pp \rightarrow \pi^0 X$
 - very similar results for $p^\uparrow \ell \rightarrow \text{jet} \ X$

- **Twist-3 (a comparison)**
 - $A_N^{p\ell\rightarrow \text{jet} \ X}$ with T_F from Sivers function: similar results [Kang et al 11]
 - impact of the new large piece in the fragmentation to $p \ell \rightarrow \pi^0 \ X$?
Conclusions

• Test of TMD factorisation in single large-scale inclusive processes

• strong analogy with $p^\uparrow p \rightarrow h X$, where A_N are large and still puzzling

• from $\ell p \rightarrow \ell' h X$ (SIDIS), to $\ell p \rightarrow h X$ at large P_T (i.e. large Q^2)

• use of a unified TMD approach (same Sivers and Collins functions)

• new HERMES data and theoretical estimates agree in shape and sign (inclusive and lepton tagged events)

• size a bit overestimated ($\ell p \rightarrow \pi^+ X$): other mechanism at work?

• predictions for a EIC, same behaviour as in $pp \rightarrow \pi X$: crucial to assess the validity of the TMD approach
Thank you

and don’t forget:

TRANSVERSITY 2014 Workshop
9-13 June, Cagliari (Italy)

- 3D-structure of the nucleon: TMDs, GPDs, OAM
- Data from COMPASS, HERMES, JLab, RHIC, BaBar, Belle
Back-up slides
Statistical error band

\[\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - F(x_i; a)}{\sigma_i} \right)^2 \]

- \(N \) measurements \(y_i \) at known points \(x_i \), with variance \(\sigma_i^2 \).
- \(F(x_i; a) \) depends non-linearly on \(M \) unknown parameters \(a_i \).
- Best fit: \(\chi^2_{\text{min}} \rightarrow a_0 \)

Error band: all sets of parameters such that \(\chi^2(a_j) \leq \chi^2_{\text{min}} + \Delta \chi^2 \)
- \(\Delta \chi^2 = 1 \leftrightarrow 1-\sigma \): small errors, uncorrelated parameters, linearity, \(\chi^2 \) parabolic
- \(\Delta \chi^2 \): fixed according to the coverage probability

\[P = \int_0^{\Delta \chi^2} \frac{1}{2\Gamma(M/2)} \left(\frac{\chi^2}{2} \right)^{(M/2)-1} \exp \left(-\frac{\chi^2}{2} \right) \, d\chi^2 \]

\(P \) = probability that true set of parameters falls inside the \(M \)-hypervolume

\[[P = 0.68 \leftrightarrow 1-\sigma, \ P = 0.95 \leftrightarrow 2-\sigma] \]