A_N in inclusive lepton-proton collisions

Umberto D'Alesio

Physics Department & INFN University of Cagliari, Italy

XXII International Workshop on

Deep-Inelastic Scattering and Related Subjects (DIS2014)

Warsaw 28 Apr.-2 May 2014

based on work in collaboration with

M. Anselmino, M. Boglione, S. Melis, F. Murgia, and A. Prokudin PRD 81 (2010) and arXiv:1404.6465

Outline

- Transverse Single Spin Asymmetries (SSA): single- vs. two- scale processes pp o h X vs. $\ell p o \ell' h, X$ (SIDIS)
- TMD approach: factorization and universality?
- SSAs in $\ell p \to h X$: a bridge or a testing ground of the TMD scheme
 - role of kinematics and dynamics
 - use of TMDs extracted from SIDIS fits
- Recent HERMES results: a comparison
- Predictions for future experiments
- Conclusions

SSAs and theoretical approaches in QCD

single scale process:
$$pp o hX$$
 $A_N = rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$

- sizeable over a huge energy range (FermiLab...RHIC)
- subleading SSA
- Twist-3 approach [Efremov-Teryaev, Qiu-Sterman, Koike- Kanazawa, Kang et al.]
 - collinear factorization established
 - universal $T_F(x,x)$ quark-gluon correlator, related to the TMD Sivers function
 - T_F from the Sivers function leads to A_N opposite in sign w.r.t. data
 - update: A_N dominated by a twist-3 term in the fragm. [Kanazawa et al. 2014]
- TMD scheme (generalization of the parton model with k_{\perp}) [Anselmino et al.]
 - factorization (and universality) assumed
 - rich and successful phenomenology

two-scale processes (SIDIS, DY, e^+e^-): large Q^2 and small P_T

- leading SSA
- TMD factorization proved
- equivalence with twist-3 approach in one-scale regime
- modified universality: change of sign of T-odd TMDs from SIDIS to DY (to be tested)
- SIDIS extraction of the Sivers and Collins functions (and transversity distribution)
- recent studies with proper scale evolution

$$\ell p \rightarrow h + X$$
...a bridge

no detection of the final lepton!

	$\ell p \to h + X$	$\ell p \to \ell' h + X$	$pp \rightarrow h + X$
scales	P_T	Q^2, P_T	P_T
hard scale	P_T	Q^2	P_T
TMD fact.	assumed	proven	assumed
c.m. frame	ℓp	$\gamma^* p$	pp
subprocesses	ℓq	ℓq	qq,qg,gg
channels	t	$\mid t \mid$	$\mid t, u, s \mid$

Detailed phenomenology [Anselmino, Boglione, UD, Murgia, Melis, Prokudin 10 & 14]

- Analogous/complementary study [She, Mao, Ma 08]
- Twist-3 approach [Kang et al 11]

Kinematics and hard scattering region

partonic subprocess at LO: $q\ell \rightarrow q\ell$

$$d\hat{\sigma}^{q\ell o q\ell} \simeq rac{1}{\hat{t}^2} ~~ \hat{t} = (p_q'-p_q)^2 \equiv -Q^2$$

hard scattering \Leftrightarrow large $|\hat{t}|$ (> 1 GeV²)

TMD factorization scheme at large P_T [assumed as in $pp \to h + X$]:

$$d\sigma^{p\ell o hX} = \sum_q f_{q/p}(x,oldsymbol{k}_\perp;Q^2)\otimes d\hat{\sigma}^{q\ell o q\ell}\otimes D_{h/q}(z,oldsymbol{p}_\perp;Q^2)$$

TMD: ${m p}_q \simeq x{m p} + {m k}_\perp$, $p_h \simeq z{m p}_q' + {m p}_\perp$

Kinematical regions

- high statistics at low P_T (around 0.5 GeV) ⇒ dominated by quasi-real photon exchange ⇒ OUT of pQCD regime
- ullet consider larger P_T values and proper forward/backward proton hemisphere

large scattering angles:
$$|t|_{\rm min} \simeq 1~{
m GeV^2}$$
 [$\sqrt{s} \simeq$ 5-10 GeV]

P_T	collinear		TMD	
	forward	backward	forward	backward
1 GeV	OK	OK	NO	OK
2 GeV	OK	OK	OK	OK

Note: under the assumption of no hard gluon emission

TMD approach to $p \ell \to h X$:

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{2d\sigma^{\mathrm{unp}}}$$

 $\phi_C \equiv \phi_h^H + \phi_{q'} [\phi_h^H]$ hadron azimuthal angle in p_q' helicity frame, Collins effect]

Single plane (w.r.t. two planes in SIDIS): $\sin(\phi_h \pm \phi_S)$ not measurable \Rightarrow No separation of effects:

⇒ hopeless????

Not really:

- single partonic channel: clear
- t-channel: \hat{t} strongly dependent on ϕ_q (Sivers azimuthal dependence)
- backward region (small \hat{u}):
 - moderately large Q^2 (ok pQCD)
 - absence of u-channel (with \hat{u} almost independent on ϕ_q)
 - * Sivers effect still active
 - * Collins effect strongly suppressed
 - $p^{\uparrow}p \to \pi X$: all spin-TMD effects in A_N strongly suppressed

Unified picture

- use of Sivers and Collins functions (and transversity) from fits to SIDIS and e^+e^- :

1. SIDIS 1:

- FFs from Kretzer 2000;
- Sivers functs. for up and down quarks [Anselmino et al, 05]
- first extraction of transversity [Anselmino et al. 07]

2. SIDIS 2:

- FFs from de Florian-Sassot-Stratmann 07;
- Sivers functs. with sea quarks [Anselmino et al. 09]
- updated h_1 [Anselmino et al. 09]
- Some differences in the SIDIS unconstrained large x region for the Sivers and transversity functions (crucial in A_N in pp collisions)
- well representative of the uncertainties in the available extractions
- Envelope of the statistical uncertainty bands

Kinematics vs. HERMES setup

HERMES:
$$d\sigma = d\sigma_{UU}[1 + S_T \sin \psi \, \boldsymbol{A}_{UT}^{\sin \psi}] \qquad \sin \psi = \hat{\boldsymbol{S}}_T \cdot (\hat{\boldsymbol{P}}_T \times \hat{\boldsymbol{k}}) \text{ and } \hat{\boldsymbol{k}} = -\hat{\boldsymbol{p}}$$

HERMES configuration: left and right interchanged but defined looking downstream w.r.t. opposite directions (lepton vs. proton) \rightarrow only a sign change in x_F : $x_F > 0$ means backward proton hemisphere.

$$A_{UT}^{\sin\psi}(x_F, P_T)|_{\text{HERMES}} = A_N^{p^{\uparrow}\ell \to hX}(-x_F, P_T)$$

Results

- Fully inclusive case
 - one large scale $P_T \simeq 1~{\rm GeV} \to Q^2 \geq 1~{\rm GeV}^2$ BACKWARD proton hemisphere
 - only one HERMES bin with $\langle P_T \rangle \simeq 1~{
 m GeV}$
- lepton-tagged or SIDIS category
 - subsample with detection of the final lepton (low rates)
 - $-Q^2 > 1 \text{ GeV}^2$ (plus usual SIDIS cuts on x_B, z_h, y, W^2)
 - extra cut: $P_T>1$ GeV [ℓp c.m. frame] SIDIS azimuthal asym. $P_T<1$ GeV [$\gamma^* p$ c.m. frame] to access intrinsic k_\perp). Note: in $\ell p \to h \, X$ the final P_T comes also from the hard scattering

HERMES data: PLB 728 (2014)

Fully inclusive case: SIDIS 1

- Collins effect suppressed: azimuthal phase integration and dynamics
- Sivers effect sizeable:
 - backward region but only t channel, and moderate $Q^2 = |\hat{t}| \rightarrow$: Sivers azimuthal phase active in the hard scattering
 - backward hemisphere but valence region ($\sqrt{s} \simeq 7$ GeV and $P_T = 1$ GeV)
 - π^- : role of up quark Sivers function coupled to non-leading FF

Fully inclusive case: SIDIS 2

- π^+ similar to SIDIS 1
- π^- dominated by negative down quark Sivers function (w.r.t. SIDIS 1)

lepton-tagged - SIDIS 1

- Collins effect only partially suppressed (Collins phase picks to -1)
- Sivers effect sizeable (cancelation in π^- due to the large role of up quark)

lepton-tagged - SIDIS 2

- Collins effect: larger w.r.t. SIDIS 1 (transversity unsuppressed at large x)
- Sivers effect: no cancelation in π^- (same large x behaviour of up and down quarks)

Predictions: JLab 12

Predictions at large energies

- Look for a behaviour similar to A_N in $p^{\uparrow}p \to \pi X$
- To facilitate the comparison: p^{\uparrow} along $+Z_{cm}$, i.e. forward region $\equiv x_F>0$
- Use of SIDIS 1 (better agreement with STAR data Boglione-UD-Murgia 08)

Notice: here $Q^2 > 1 \text{ GeV}^2$ also in the forward region

Comments

- Collins effect
 - suppressed in the backward region: azimuthal phase integration
 - small in the forward region even if the Collins phase is active
- Sivers effect
 - suppressed in the backward region: one channel but large Q^2 are not sensitive to the Sivers phase
 - sizeable and increasing in the forward region
 - similar behaviour as for A_N in $pp \to \pi^0 X$
 - very similar results for $p^{\uparrow}\ell \to \mathrm{jet}\, X$
- Twist-3 (a comparison)
 - $A_N^{p\ell o {
 m jet}\, X}$ with T_F from Sivers function: similar results [Kang et al 11]
 - impact of the new large piece in the fragmentation to $p \ \ell \to \pi^0 \, X$?

Conclusions

- Test of TMD factorisation in single large-scale inclusive processes
- strong analogy with $p^{\uparrow}p \to h X$, where A_N are large and still puzzling
- from $\ell p \to \ell' h X$ (SIDIS), to $\ell p \to h X$ at large P_T (i.e. large Q^2)
- use of a unified TMD approach (same Sivers and Collins functions)
- new HERMES data and theoretical estimates agree in shape and sign (inclusive and lepton tagged events)
- size a bit overestimated ($\ell p \to \pi^+ X$): other mechanism at work?
- predictions for a EIC, same behaviour as in $pp \to \pi X$: crucial to assess the validity of the TMD approach

Thank you

and don't forget:

TRANSVERSITY 2014 Workshop 9-13 June, Cagliari (Italy)

- 3D-structure of the nucleon: TMDs, GPDs, OAM
- Data from COMPASS, HERMES, JLab, RHIC, BaBar, Belle

Back-up slides

Statistical error band

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - F(x_i; \boldsymbol{a})}{\sigma_i} \right)^2$$

- N measurements y_i at known points x_i , with variance σ_i^2 .
- $F(x_i; \mathbf{a})$ depends *non-linearly* on M unknown parameters a_i .
- Best fit: $\chi^2_{\min} o oldsymbol{a}_0$

Error band: all sets of parameters such that $\chi^2(a_j) \leq \chi^2_{\min} + \Delta \chi^2$

- $\Delta \chi^2 = 1 \leftrightarrow 1$ - σ : small errors, uncorrelated parameters, linearity, χ^2 parabolic
- $\Delta \chi^2$: fixed according to the coverage probability

$$P = \int_0^{\Delta \chi^2} \frac{1}{2\Gamma(M/2)} \left(\frac{\chi^2}{2}\right)^{(M/2)-1} \exp\left(-\frac{\chi^2}{2}\right) d\chi^2$$

P= probability that true set of parameters falls inside the M-hypervolume

$$[P = 0.68 \leftrightarrow 1\text{-}\sigma, P = 0.95 \leftrightarrow 2\text{-}\sigma]$$