Higgs as a gluon trigger

Study QCD in high pile-up environments

- P. Cipriano, S. Dooling, A. Grebenyuk,
- P. Gunnellini, F. Hautmann, H. Jung,
- P. Katsas, H. Van Haevermaet

DIS XXII. Warsaw, 28 April - 2 May 2014

Introduction

- To study QCD one e.g. measures processes in single, very low pile-up (PU), proton – proton collisions, at e.g. the LHC
- One such interesting process is Drell-Yan: all standard electroweak currents couple to quarks
 - → measure the structure function of quarks
 - → study quark induced parton showers
 - → measure underlying event (UE) properties
 - → advantage: clean final state
- Properties and structure functions of gluons are then indirectly measured
- Is there a way to probe the gluons directly?

What about Higgs production?

➤ Actually yes! In the heavy top limit, the Higgs boson directly couples to gluons: gg → H

- Color singlet current
- > For non-hadronic decays one has access to the same clean final state as in the DY process
- But now we directly measure gluon induced effects

The challenge at high pile-up environments

- > Is it possible to study QCD with Higgs and DY processes in current proton-proton colliders?
- > Small cross section of the (Higgs) processes:
 - operate at very high pile-up conditions for sufficient statistics
 - → differential measurements

Higgs production: ATLAS-CONF-2013-072

Higgs as a gluon trigger

- > Start new QCD program with Higgs as a gluon trigger
 P. Cipriano, S. Dooling, A. Grebenyuk, P. Gunnellini, F. Hautmann, H. Jung, P. Katsas Phys. Rev. D 88, 097501 (2013)
- Compare Higgs and DY production in the same mass range
- Transverse momentum spectrum: difference in soft gluon resummation

- Perform pile-up studies:
 - → look at ratio (Higgs/DY): direct difference in soft gluon vs quark resummation
 - → look at subtraction (Higgs DY): remove PU contributions from UE

Higgs as a gluon trigger: p_T spectra

Single Z production and gg -> H production with tune 4C at √s = 7 TeV Bosons stable; mass range 115 GeV < M < 135 GeV, |η| < 2 With No PU; Fixed PU=5; Fixed PU=20; PU processes: Soft QCD (all)</p>

Look at the inclusive p_T spectra:

By definition p_T spectra are stable with PU

If experimental reconstruction of decay products is precise enough:

→ can directly probe the gluon

Higgs as a gluon trigger: p_T spectra

Single Z production and gg -> H production with tune 4C at √s = 7 TeV Bosons stable; mass range 115 GeV < M < 135 GeV, |η| < 2 With No PU; Fixed PU=5; Fixed PU=20; PU processes: Soft QCD (all)</p>

Look at the inclusive p_T spectra:

By definition p_T spectra are stable with PU

If experimental reconstruction of decay products is precise enough:

- → can directly probe the gluon
- → ratio Higgs/DY quantifies gluon vs quark resummation

Look at boson + 1 jet and boson + 2 jet events

Jets: Anti- k_T R=0.5, $p_T > 30$ GeV, $|\eta| < 4.5$

- Requiring additional hard jets shifts the spectra towards higher p_T
- p_T balance between boson + jets
- Quark vs gluon induced effects less significant

Look at boson + 1 jet and boson + 2 jet events

- Requiring additional hard jets shifts the spectra towards higher p_T
- p_T balance between boson + jets
- Difference Higgs vs DY decreases

$$/$$
 inclusive: ~1.52
 $/$ boson + 1 jet: ~1.17
 $/$ boson + 2 jet: ~1.16

Boson + 1 jet and boson + 2 jet events with fixed PU=20

- Both Higgs and DY spectra shift to lower values (inclusive spectrum)
- Mismatching of leading jets:
 - → higher probability that high p_T jets come from independent PU event
- Difference stable when taking ratio?

Boson + 1 jet and boson + 2 jet events with fixed PU=20

- Ratio not stable due to difference in hardness of inclusive spectra
 - → fraction of jet mismatching not the same
- Very low PU runs stay important to study QCD

The underlying event in high pile-up environments

- > UE studies typically measure the number of charged particles (or Σp_T) in the transverse plane
- > As function of the hard scale in the event
- Compare UE of Higgs vs DY production
 - → clean final state → only initial state radiation (ISR) + MPI
- Can one perform UE studies in high PU environments?

Charged Jet #1 Direction

The underlying event in high pile-up environments

- > UE studies typically measure the number of charged particles (or Σp_T) in the transverse plane
- Activity scales with number of additional PU events
- But one can subtract PU contribution:

$$\frac{dn}{dp_t}(H-DY) = \frac{dn}{dp_t}_H + \frac{dn}{dp_t}_{pileup} - \left(\frac{dn}{dp_t}_{DY} + \frac{dn}{dp_t}_{pileup}\right)$$

Charged Jet #1 Direction

The underlying event in high pile-up environments

After substraction of activity in DY from activity in Higgs production:

- > PU contribution cancels
- Probe directly difference of quark vs gluon induced UE activity (ISR)!

Conclusions

- Higgs production measurement provides new perspectives for challenging QCD studies
 - only electroweak current that couples to gluons
 - → color singlet state: no complications from final state effects
- Novel method: compare Higgs DY in same mass & rapidity range:
 - → direct comparison of quark vs gluon induced processes
- Presented preliminary generator studies:
 - → ratios of inclusive, boson + 1 jet & boson + 2 jet p_T spectra: inclusive spectrum sensitive to soft gluon resummation boson + jet events suffer from PU effects
 - → underlying event activity in subtraction Higgs DY:
 <N_{ch}> & <Σp_T> in transverse regions stable with PU
 - → with Higgs DY comparison, we can still measure the UE in high PU!
- Comparison of Higgs DY processes allows interesting and challenging QCD measurements at high luminosity

