Measurement of the production cross section of prompt J/ψ mesons in association with a W^\pm boson in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment

(arXiv:1401.2831)

Hannah Arnold

on behalf of the ATLAS collaboration

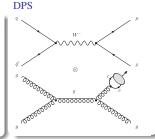
Albert-Ludwigs-Universität Freiburg

DIS2014, Warsaw

April 29, 2014

Introduction

First observation of the production of W^\pm +prompt J/ψ and measurement of the cross-section ratio relative to inclusive W^\pm production


Production of heavy quarkonia

- various theoretical models (CSM, NRQCD,...) competing production mechanisms
 - color-singlet (CS) process
 - color-octet (CO) process (NRQCD)
- results of current measurements of inclusively produced quarkonia (cross section, polarization) are contradictory

CS vs. CO

Measurement of the W^{\pm} +prompt J/ψ production cross section

- can help to distinguish between different production scenarios, e.g.
 - lacktriangledown being dominated by CO processes ightarrow test of NRQCD
 - a has comparable CS and CO contributions
- probes double parton scattering (DPS)
- step towards measuring Higgs boson decays into rare quarkonia
- probes BSM frameworks

Data analysis

2011 dataset 4.5 fb⁻¹ of $\sqrt{s} = 7$ TeV pp collisions collected by the ATLAS experiment

Event selection

 J/ψ selection: $J/\psi \to \mu^+\mu^-$

- ullet two oppositely charged muons: $p_{\mathrm{T}}^{\mu} > 4(2.5/3.5)\,\,\mathrm{GeV},\, |\eta_{\mu}| < 2.5$
 - common vertex
 - invariant mass: 2.5 GeV $< m_{\mu^+\mu^-} < 3.5$ GeV
- transverse momentum and rapidity of J/ψ :

8.5 GeV
$$< p_{\rm T}^{{\rm J}/\psi} < 30$$
 GeV, $|y_{{\rm J}/\psi}| < 2.1$

W selection: $W \rightarrow \mu\nu$

- isolated, high $p_{\rm T}$ muon: $p_{\rm T}^{\mu} > 25$ GeV, $|\eta_{\mu}| < 2.4$
- missing transverse energy: $E_{\rm T}^{\rm miss} > 20$ GeV
- transverse mass of the W boson: $m_{\rm T}^{\rm W} > 40~{\rm GeV}$

Additional cuts

- impact parameter cuts to suppress muons stemming from heavy flavour decays and pile-up interactions
- Z boson veto

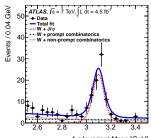
Backgrounds

- W+b
- $t\bar{t}$
- Z+jets
- $B_c \to J/\psi \mu \nu X$
- multijet
- pile-up
- DPS

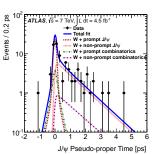
Measurement strategy

- Extraction of prompt J/ψ component
 - = separation of **prompt** J/ψ component from **non-prompt** J/ψ component (from *b*-hadron decays) and **combinatorial** backgrounds
- 2 Extraction of W^{\pm} +prompt J/ψ component
 - = separation of associated production with a W boson from multijet events
 - = template fit to W transverse mass $m_{\mathrm{T}}^{\mathrm{W}}$ of **prompt** J/ψ component
 - → multijet contamination negligible
 - ⇒ BACKUP slides
- Determination of residual background contributions
 - pile-up
 - DPS
 - other backgrounds negligible

to W+prompt J/ψ yield


Extraction of the (W+) prompt J/ψ component

2D unbinned maximum likelihood fit


- invariant mass $m_{\mu^+\mu^-}$: J/ψ component vs. combinatorial background
- **2** pseudo-proper time τ : prompt vs. non-prompt components

$$au = L_{xy} \cdot \frac{m_{\mu^+\mu^-}}{p_{\mathrm{T}}^{J/\psi}}$$
 L_{xy} : distance from PV to SV

- \Rightarrow prompt J/ψ
- shape parameters, e.g. mass and pseudo-proper time resolution, are considered as nuisance parameters
 - \rightarrow initial values and constraints determined by performing a fit in an **inclusive** J/ψ **sample** selected in data
- ullet use sPlot technique to extract variable distributions of the prompt J/ψ component from data

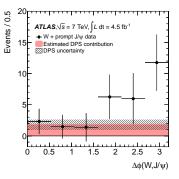
μ⁺μ⁻ Invariant Mass [GeV]

Pile-up determination

Pile-up: W^{\pm} and J/ψ candidates might be produced in different pp collisions of the same bunch crossing

$$N_{\mathrm{PU}} = N_{\mathrm{vtx}}^{\mathrm{extra}} \cdot P_{J/\psi} \cdot N_{W^{\pm}}$$

- $N_{\text{vtx}}^{\text{extra}}$: number of extra collisions ($z_0 < 10 \,\text{mm}$), computed from
 - ullet the mean number of collisions per pp bunch crossing μ
 - the geometric parameters of the interaction region
- $P_{J/\psi} = \sigma_{J/\psi}/\sigma_{inel}$: probability of producing a J/ψ meson
 - $\sigma_{J/\psi}$: cross section of inclusive J/ψ production (arXiv:1104.3038)
 - $\sigma_{\rm inel}$: pp inelastic cross section
- $N_{W^{\pm}}$: number of W^{\pm} candidates in fiducial region
- $N_{\rm vtx}^{\rm extra} \sim \sigma_{inel} \rightarrow N_{\rm PU}$ independent from σ_{inel}
- \rightarrow number of estimated pile-up events: $N_{\rm PU} = 1.8 \pm 0.2$
- \rightarrow subtracted from W^{\pm} +prompt J/ψ in cross section calculation


Determination of the DPS component

Double parton scattering (DPS): W^{\pm} and J/ψ candidates originate from two different parton interactions in the **same** pp collision

$$N_{\rm DPS} = P_{J/\psi|W^\pm} \cdot N_{W^\pm}$$

- ullet standard ansatz: $P_{J/\psi|W^\pm} = \sigma_{J/\psi}/\sigma_{
 m eff}$
- two interactions are treated as independent
- $\sigma_{eff} = (15 \pm 3^{+5}_{-3})$ mb accounts for the geometric size of the proton (arXiv:1301.6872)
- \rightarrow number of **DPS events**: $N_{\text{DPS}} = 11 \pm 4$

Cross check $\Delta\phi(W^{\pm},J/\psi)$

- distribution for $W^\pm + {\rm prompt}\, J/\psi$ component extracted from data using sPlot technique
- DPS: **flat** distribution of $\Delta \phi(W^{\pm}, J/\psi)$ (independent processes)
- SPS: $\Delta\phi(W^{\pm},J/\psi)$ peaks strongly near π
- $ightarrow \Delta\phi(W^\pm,J/\psi)$ distribution in data suggests both DPS and SPS contributions
- \rightarrow determined rate is compatible

Results I: observation of W^{\pm} +prompt J/ψ

2D-fit results

J/ψ		background	
prompt	non-prompt	prompt	non-prompt
29^{+8}_{-7}	42^{+8}_{-7}	39^{+9}_{-7}	39^{+8}_{-7}

- combined statistical and systematic uncertainties due to nuisance parameters from the fit statistical uncertainties dominating
- the W^{\pm} +prompt J/ψ component includes
 - 1.8 ± 0.2 pile-up events ightarrow subtracted in the following
 - 11 ± 4 DPS events

Signal significance: 5.1σ

- evaluated using pseudo-experiments for background-only hypothesis
- → reject background-only hypothesis for the likelihood ratio in data
- → observation

Measurement of the W^{\pm} +prompt J/ψ to W^{\pm} cross-section ratio $R_{J/\psi}$

Cross-section ratio (8.5 GeV $< p_{\rm T}^{{\rm J/\psi}} < 30$ GeV, $|y_{{\rm J/\psi}}| < 2.1$)

$$R_{J/\psi} = \frac{N(W^{\pm} + J/\psi)}{\varepsilon_{J/\psi} \cdot \alpha_{J/\psi} \cdot N(W^{\pm})}$$

- $N(W^\pm + J/\psi)$: number of W^\pm +prompt J/ψ events (normalized to fiducial region)
- $N(W^{\pm})$: number of inclusive W^{\pm} events
- $\bullet \ \varepsilon_{J/\psi} \colon {\it efficiency}$ correction factor for J/ψ decay muons
- ullet $\alpha_{J/\psi}$: acceptance correction factor for J/ψ decay muons
- \rightarrow luminosity, BR(W \rightarrow $\mu\nu$) and W $^{\pm}$ reconstruction efficiency and acceptance corrections cancel
- \rightarrow reduced systematic uncertainties

Number of W^{\pm} events: $N(W^{\pm}) = 1.48 \times 10^7$

- W^{\pm} part of event selection
- background estimation and subtraction
 - Z+jets, $t\bar{t}$ and diboson: simulations
 - multijet: data-driven (ABCD) method

Results II: cross-section ratio

Cross-section ratio results (8.5 GeV $< p_T^{J/\psi} < 30$ GeV, $|y_{J/\psi}| < 2.1$)

- fiducial cross-section ratio $R_{L/ab}^{\text{fid}} = (51 \pm 13 \pm 4) \times 10^{-8}$
 - **before** correction of the **fiducial acceptance** of J/ψ decay muon
- **a** inclusive cross-section ratio $R_{J/\eta b}^{\text{incl}} = (126 \pm 32 \pm 9_{-25}^{+41}) \times 10^{-8}$
 - after correction of the fiducial acceptance of the J/ψ decay muons
 - assumption: isotropic spin-alignment
- **DPS-subtracted** cross-section ratio $R_{J/\psi}^{DPS \text{ sub}} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8}$
 - \rightarrow comparison to theoretical predictions

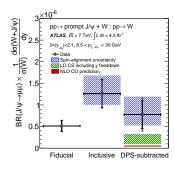
Uncertainties

•	statistical	ı
•	statistica.	L

systematic due to spin-alignme
$$\leftrightarrow J/\psi$$
 muon acceptance

Source	Barrel	Endcap
J/ψ muon efficiency	(3-5) %	(3-5) %
W^{\pm} boson kinematics	2 %	5 %
Fit	5 %	5 %
J/ψ spin alignment	+36 % -25 %	+27 % -13 %
Statistical	$^{+47\%}_{-40\%}$	+30 % -27 %

Comparison with theoretical predictions

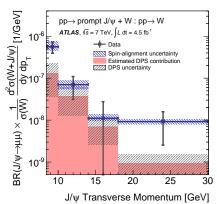

Comparison of
$$R_{J/\psi}^{\text{DPS sub}} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8} \, \text{ to}$$

- LO colour-singlet
- NLO color-octet

predictions for W^\pm +prompt J/ψ SPS production normalized to the NNLO W^\pm production cross section

 LO CS contribution nearly an order of magnitude larger than NLO CO contribution:

$$(10-32) \times 10^{-8}$$
 vs. $(4.6-6.2) \times 10^{-8}$



- LO CS prediction consistent with measured $R_{J/\psi}^{\rm DPS~sub}$ within experimental and theoretical uncertainties
- both predictions are **compatible** with the measured result at the 2σ level

 $\Rightarrow W^{\pm}$ +prompt J/ψ no distinctive signature of CO production

Additional result

Differential cross-section ratio $\mathrm{d}R_{J/\psi}^\mathrm{incl}/\mathrm{d}p_\mathrm{T}$ as function of $p_\mathrm{T}^{J/\psi}$

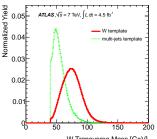
- no DPS subtraction
 - → both SPS and DPS contributions
- estimated DPS contribution overlaid
- ightarrow SPS dominant contribution to the total production rate of W^{\pm} +prompt J/ψ at low $p_{\scriptscriptstyle T}^{J/\psi}$

Summary

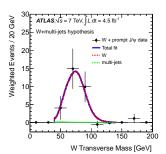
- First observation of 27^{+8}_{-7} W^{\pm} +prompt J/ψ events with a **statistical significance of 5.1** σ
- ullet the measurement of the fiducial cross section ratio relative to inclusive W^\pm production $R_{J/\psi}^{\mathrm{fid}}$
- acceptance-corrected cross-section ratio $R_{J/\psi}^{\rm incl}$ suffers from **unknown spin-alignment** affecting the J/ψ muon acceptance
 - → will be **limiting factor** when more data is analysed
- the comparison of the DPS-subtracted cross-section ratio $R_{J/\psi}^{\rm DPS~sub}$ to LO CS and NLO CO predictions suggests W^{\pm} +prompt J/ψ production is **no distinctive signature of CO production**
- **DPS** contributes with a large fraction to the W^{\pm} +prompt J/ψ production
- the differential cross-section ratio $dR_{J/\psi}^{\rm incl}/dp_{\rm T}$ as function of $p_{\rm T}^{J/\psi}$ suggests that **SPS** is the **dominant** contribution at low $p_{\rm T}^{J/\psi}$

BACKUP

Extraction of the W^{\pm} +prompt J/ψ component


Multijet events can fake the W decay signature due to muons and neutrinos from heavy flavour decays and mismeasurement of the jet energy

ightarrow separate W^\pm +prompt J/ψ component from multijet events exploiting the W transverse mass distribution


Template fit to W transverse mass

- \bullet extract $m_{\rm T}^{\rm W}$ distribution of ${\bf prompt}\,J/\psi$ component from data using sPlot technique
- multijet template: non-isolated muons in data using ABCD method
- W+prompt J/ψ template: MC simulation

 \rightarrow number of estimated **multijet events**: 0.1 ± 4.6

W Transverse Mass [GeV]

