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Gluon saturation beyond (naive) leading logs

Outline

Dilute-dense scattering at high energy
→ Common introduction with the next 2 talks.

Kinematical constraint for the BFKL equation

Consistent Leading Logs from DIS at NLO

Kinematical constraint for the BK equation

G.B., to appear in Phys. Rev. D, arXiv:1401.0313
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Introduction

Dilute-dense scattering at high-energy

High energy scattering:

projectile : momentum qµ ' δµ+q+

target : momentum Pµ ' δµ−P−
⇒ Mandelstam s variable: s ' 2P− q+

Eikonal approximation: Take the high-energy limit s → +∞ and drop
power-suppressed contributions.

Semi-classical approximation: At weak coupling g , dense target →
random classical background field Aµa (x) = O(1/g).

In the semi-classical approximation, the eikonal limit can be obtained by
an infinite boost P− → +∞ of the target field Aµa (x). Hence:

Only the A−a component is relevant

Infinite Lorentz dilation: Aµa (x) independent of x−

Infinite Lorentz contraction: Aµa (x) ∝ δ(x+) (shockwave)



Gluon saturation beyond (naive) leading logs

Introduction

Eikonal dilute-dense scattering

Recipe for dilute-dense processes at high-energy,
following Bjorken, Kogut and Soper (1971):

Decompose the projectile on a Fock basis at the time x+ = 0, with
appropriate Light-Front wave-functions.

Each parton n scatters independently on the target via a light-like
Wilson line URn(xn) through the target:

URn(xn) = P+ exp

[
ig

∫
dx+ T a

Rn
A−a (x+, xn)

]
with Rn = A, F or F̄ for g , q or q̄ partons.

Include final-state evolution of the projectile remnants.

Comments:

1 Light-cone gauge A+
a = 0 strongly recommended!

2 At this stage, no apparent dependence on s ...
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Example: Dipole factorization for DIS at LO

⊗ ⊗

(1−z1)q
+, x0

z1q
+, x1

q+, Q2

x+ = −∞ x+ = +∞x+ = 0

σγT ,L = 4Nc αem

(2π)2

∑
f e

2
f

∫
d2x0 d

2x1

∫ 1

0

dz1

×Iqq̄,LOT ,L (x01, z1,Q
2)
[
1− 〈S01〉η

]
Bjorken, Kogut, Soper (1971); Nikolaev, Zakharov (1990)

Dipole operator: S01 =
1

Nc
Tr
(
UF (x0)U†F (x1)

)
η: regulator of rapidity divergence of Wilson lines UF (xn).



Gluon saturation beyond (naive) leading logs

Introduction

Corrections beyond the eikonal approximation

At least three sources of corrections to the eikonal approximation:

1 Other components of the target background field Aµa (x)

2 Dynamics of the target: x− dependence of Aµa (x)

3 Finite width L+ of the target along x+

In the context of jet quenching and in-medium energy loss: full finite
width effects are included, but not the other effects.
→ Further approximation (like harmonic potential for BDMPS-Z)
required to deal with quantum diffusion of the projectile inside the
target.

For scattering in the high-energy limit, power-suppressed finite L+

correction can be calculated systematically without further
approximation.
⇒ Power series in L+Q2

s /q
+ � 1. (Note that L+/q+ ∝ 1/s)

Altinoluk, Armesto, G. B., Martinez and Salgado, arXiv:1404.2219.

→ See talk by Tolga Altinoluk
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High-energy OPE in the eikonal limit

High-energy Operator Product Expansion for eikonal dense-dilute
scattering observables:

σ = ILO⊗
〈
Ô0

〉
η

+αsINLO(η)⊗
〈
Ô1

〉
η

+α2
sINNLO(η)⊗

〈
Ô2

〉
η

+O(α3
s )

where the operators Ôn are products of Wilson lines and INnLO

calculable coefficients.
Balitsky (1996)

Dependence on the regulator η has to cancel in the sum.
⇒ RG evolution for the operators: JIMWLK equation

∂η

〈
Ôn

〉
η

= −
〈
H Ôn

〉
η

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner, ... (1997-2002)

Natural factorization scale choice: η ∼ log(1/s)
(but scheme-dependent)
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B-JIMWLK and BK evolutions

RG evolution for the dipole operator:

∂η 〈S01〉η = −〈H S01〉η =
2αsCF

π

∫
d2x2

2π

x2
01

x2
02 x

2
21

〈S012−S01〉η

= ᾱ

∫
d2x2

2π

x2
01

x2
02 x

2
21

〈S02S21−S01〉η

with ᾱ = Ncαs/π, and the qq̄g tripole operator

S012 ≡
1

NcCF
Tr
(
UF (x0)taU†F (x1)tb

)
Uba
A (x2) =

Nc

2CF

[
S02 S21 −

1

N2
c

S01

]
New operator 〈S012〉η or 〈S02S21〉η appears ⇒ only the first equation in
Balitsky’s infinite hierarchy.

In practice: truncate the hierarchy with the approx
〈S02S21〉η ' 〈S02〉η 〈S21〉η to get the BK equation.
Balitsky (1996); Kovchegov (1999)
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NLO revolution for gluon saturation: observables

So far, most calculations and studies have been performed at LO in ᾱ,
with resummations of leading logs (ᾱ log(1/s))n using to the
BK/JIMWLK equations.

However, NLO calculations are now available for the two simplest
observables:

NLO corrections to DIS structure functions
Balitsky, Chirilli (2011)

G.B. (2012)

NLO corrections to forward single inclusive particle production in pA
(or pp)
Chirilli, Xiao, Yuan (2012)
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NLO revolution for gluon saturation: evolution
equations

The NLO corrections to the evolution equations are also known, allowing
in principle NLL resummations: ᾱ(ᾱ log(1/s))n

BK equation at NLO:
Balitsky, Chirilli (2008)

NLO corrections to the JIMWLK equation and Balitsky’s hierarchy
Balitsky, Chirilli (2013); Kovner, Lublinsky, Mulian (2013)

→ See talk by Yair Mulian

Moreover: Proof that observables like DIS or like particle production
obey the same NLL equation (despite crossing of Wilson lines from the
complex conjugate amplitude to the amplitude)
Mueller, Munier (2012)
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All-orders corrections to the high-energy evolution

Naive perturbative expansion in ᾱ of the BK and JIMWLK (and BFKL)
equations is badly behaved

⇒ All-orders resummations of several effects needed to make the
expansion stable

Running coupling: Crucial impact to phenomenological studies, but
rather well understood. Up-to-date prescriptions:

For BK: Balitsky’s prescription (2007)
For JIMWLK: Lappi-Mäntysaari prescription (2013)

→ Both select, in all possible limits, the minimal dipole
size for the scale in ᾱ.

Kinematical contraint: Improvement of kinematics required to make BK,
JIMWLK and BFKL consistent at finite energies.
→ Main topic of the rest of this talk!

Moreover, it might be possible (needed?) to resum the full DGLAP
evolution into the BK and JIMWLK equations in various limits.
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NLO revolution for gluon saturation: phenomenology?

First practical study at NLO+LL accuracy:

0 1 2 3
10−7

10−5

10−3

10−1

101

η = 3.2
(×0.1)

η = 2.2

p⊥[GeV]

d
3
N

d
η
d
2
p
⊥

[ G
eV
−
2
]

BRAHMS η = 2.2, 3.2

LO

NLO

data

Forward single inclusive hadron production in pA
Staśto, Xiao, Zaslavsky (2013)

Good at small p⊥, but large negative NLO corrections at large p⊥ !

⇒ More work needed to fully understand and solve this problem... (More
on this issue at the end of the talk.)
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Kinematical constraint for BFKL

Approximations required in the derivation of
the BFKL equation are valid only if successive
gluon are strongly ordered in k+ and in k−

simultaneously:

k+
0 � k+

1 � · · · � k+
n � . . .

and
k−0 � k−1 � · · · � k−n � . . .

In each factorization scheme, only the ordering
along the chosen evolution variable is
guarantied.

⇒ (Small) inconsistency on the standard
version of the BFKL equation!

k0

k1

k2

k3

k4

k5

pa

pb

q1

q2

q3

q4

q5
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Kinematical constraint for BFKL

Kinematical constraint for BFKL

Example: factorization scheme with regulator
η ∼ log(k+) ⇒ strong ordering in k+.

Then, ordering in k− has to be imposed in the
BFKL equation, by a restriction on the k⊥
integration.

→ Kinematical constraint

Ciafaloni (1988)
Catani, Fiorani, Marchesini (1990)
Andersson, Gustafson, Kharraziha, Samuelsson
(1996)

Kwieciński, Martin, Sutton (1996)

Analog in Mellin space: Salam (1998)

First study in mixed-space:
Motyka, Staśto (2009)
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Consistent Leading Logs from DIS at NLO

DIS at high energy at NLO (fixed order)

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

σγT ,L(Q2, xBj) = 2 2Nc αem

(2π)2

∑
f e

2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1

×
{
Iqq̄,LOT ,L (x01, z1,Q

2)
[
1 +O(Ncαs)

] [
1− 〈S01〉0

]
+

2αsCF

π

∫ 1−z1

zmin

dz2

z2

∫
d2x2

2π
Iqq̄gT ,L (x0, x1, x2, z1, z2,Q

2)
[
1− 〈S012〉0

]}

with zn = k+
n /q

+ and zmin =
xBj
Q2

Q2
0

x0
.

G.B. (2012); see also Balitsky, Chirilli (2011).
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Consistent Leading Logs from DIS at NLO

Extraction of LL from NLO

The LL contained in the NLO term seems consistent with BK

ᾱ

∫ zf

zmin

dz2

z2

∫
d2x2

2π I
qq̄g
T ,L (x0, x1, x2, z1, z2,Q

2)
[
1− 〈S012〉0

]
∼ Iqq̄,LOT ,L (x01, z1) ᾱ log

(
zf
zmin

)∫
d2x2

2π
x2

01

x2
02 x

2
21

[
1− 〈S012〉0

]
because Iqq̄gT,L(x0,x1,x2,z1,z2=0) =

x2
01

x2
02

x2
21
Iqq̄,LOT,L (x01,z1)

However: for any small but finite z2 = k+
2 /q

+

Iqq̄gT,L(x0,x1,x2,z1,z2)� x2
01

x2
02

x2
21
Iqq̄,LOT,L (x01,z1)

when z1(1−z1)x2
01 � z2x

2
02 ' z2x

2
21.

⇒ Splitting of a dipole into much larger dipoles do not participate to
LL’s !

Physical interpretation: splitting into too large dipoles violate lifetime
ordering of the fluctuations.
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Kinematical constraint for the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dk+

2

k+
2

d2x2

2π

x2
01

x2
02x

2
21

〈
S02 S21−

1

N2
c

S01

〉
Y +

2 =log(k+
2 /k

+
min)

Ordering in k+ guarantied by the choice of factorization
scheme/evolution in k+, at k+

f .

Modification: forbid gluon emission at large distance, multiplying the real
contribution by θ

(
k+
f x2

01−k+
2 min(x2

02, x
2
21)
)

→ Mixed-space analog of the k− ordering (kinematical constraint).

Same general idea as in the previous study in mixed space:
Motyka, Staśto (2009)

However: several issues there, in particular the treatment of virtual
corrections.
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Kinematical constraint for the BK equation

Calculating virtual corrections from unitarity

Assume the kinematical constraint to preserve the probabilistic
interpretation of the parton cascade.

Evolution of 〈S01〉 over a finite range Y +
f = log(k+

f /k
+
min):

〈S01〉Y +
f

= 〈S01〉0 × D01(Y +
f ) + ᾱ

∫ Y +
f

0

dY +
2 D01(Y +

f −Y +
2 )

×
∫

d2x2
2π

x2
01

x2
02x

2
21

θ

(
Y +
f −Y +

2 −log

(
min(x2

02, x
2
21)

x2
01

))
×
〈
S02 S21−

1

N2
c

S01

〉
Y +

2

with the probability D01(Y +) of no splitting for the dipole 01 in the
range Y +.



Gluon saturation beyond (naive) leading logs

Kinematical constraint for the BK equation

Calculating virtual corrections from unitarity

In the vacuum (absence of target), S01 = S02 = S21 = 1.
→ equation determining D01(Y +).

Solution:

D01(Y +) = exp

[
−ᾱ 2CF

Nc

∫
d2x2

2π

x2
01

x2
02x

2
21

(
Y +−∆012

)
θ
(
Y +−∆012

)]
where the shift ∆012 should behave as

∆012 = 0 for x2
02 . x2

01 and x2
21 . x2

01

∆012 ∼ log

(
x2

02

x2
01

)
∼ log

(
x2

21

x2
01

)
for x2

01 � x2
02 ∼ x2

21

Possible choices:

∆012 = max

{
0, log

(
min(x2

02, x
2
21)

x2
01

)}
or ∆012 = max

{
0, log

( |x02 · x21|
x2

01

)}
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Kinematically constrained BK equation (kcBK)

Rewriting the new evolution equation as a differential equation and
discarding irrelevant terms explicitly of order NLL:

∂Y + 〈S01〉Y + = ᾱ

∫
d2x2

2π

x2
01

x2
02 x

2
21

θ(Y +−∆012)

×
{〈
S02S21−

1

N2
c

S01

〉
Y +−∆012

−
(

1− 1

N2
c

)
〈S01〉Y +

}

G.B., arXiv:1401.0313

Slows down the BK evolution:

Restriction of phase space by the theta function

Shift of the Y + argument of the dipole amplitude in the real term
but not in the virtual term.

Large effect especially at small Y +.
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Kinematical constraint for the BK equation

Numerics for kcBK

r      
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N
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,Y
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R.C: Balitsky’s prescription

Main effects of the kinematical constraint (running coupling case):

slows down the beginning of the Y + evolution,
especially for softer initial Qs

at large Y +: ∼ constant rescaling of the saturation scale

Work in progress; Albacete, Armesto, G.B., Milhano
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Kinematical constraint for the BK equation

Back on the issues at NLO+LL for pA
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Staśto, Xiao, Zaslavsky (2013)

Possible origin of large negative NLO corrections: Use of the standard
BK instead of kcBK to subtract LL’s from NLO terms.

Alternative explanation: subtraction of LL’s from NLO terms not done in
a consistent factorization scheme.
Kang, Vitev, Xing (2014)
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Conclusion

The kinematical constraint is required to make high-energy evolution
equations consistent at finite energies.

It allows to

resum the LLs actually present in observables at NLO and beyond
→ from naive LL to consistent LL accuracy!

reproduce the correct DLL limit of DGLAP

enforce strong x+-time ordering of the fluctuations along the
evolution

Kinematically consistent BK equation (kcBK) now available.

Impact on phenomenological studies?

What about JIMWLK?
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