Search for electroweak SUSY production at CMS

Hamed BAKHSHIANSOHI (IPM,Iran) on behalf of the CMS collaboration

> DIS2014 Warsaw, Poland

Introduction and Motivation

Introduction and Motivation

Bibliography

- **CMS-SUS-13-006** : Search for electroweak production of <u>charginos, neutralinos, and sleptons</u> using *leptonic final states* in pp collisions at 8 TeV
- CMS-SUS-13-017 : Search for electroweak production of <u>charginos and neutralinos</u> in final states with <u>a Higgs boson</u> in pp collisions at 8 TeV
- CMS-SUS-13-022 : Search for electroweak production of <u>higgsinos</u> in channels with *two Higgs bosons decaying to b quarks* in pp collisions at 8 TeV

Chargino-Neutralino production

6

1Lepton, SS Leptons, > 2 leptons

Chargino-Neutralino 3Leptons + MET

- Selection
 - Exactly 3 leptons, up to one hadronic tau
 - MET > 50 GeV (Suppress Z+Jets)
 - b-veto (Suppress ttbar)
 - Classify events based on lepton flavours, M(II), Transverse mass, MET
- Main Backgrounds
 - WZ : MC (with data-driven MET correction)
 - ttbar+fake : data-driven fake rate method

Lepton Falvour Categories

- 3I, OSSF Pair
- 3I, No OSSF Pair
- SS 2I + one hadronic tau
- OS 2I + one hadronic tau

 $\tilde{\chi}_1^{\pm}$

Chargino-Neutralino SS Dilepton + MET

Event Selection:

- Exactly two high Pt SS e/mu leptons
- 2 Signal Regions :
 - 120 < MET < 200 , At most 2 jets, No b-jets
 - MET > 200 GeV

- Chargino-Neutralino Z+W+MET
- Event Selection
 - Z → II candidate
 - MET > 80 GeV
 - 2Jets with Mjj \sim W/Z mass
 - b-veto (to supress ttbar)
- Backgrounds
 - Z+Jets : Fake MET is modeled using photon+jets events
 - ttbar : estimated using e/mu control sample
- No excess is observed

Chargino-Neutralino Z+W+MET : Limits

Results based on Z(QQ)W(jj) and 3Q searches

 Complementarity: improvement from combination

1 lepton + bb

- Selection
 - Exactly on high pt lepton
 - Exactly 2 jets, both b-tagged
 - Cuts on MET and MT
- Backgrounds from MC
- Search for a peak in M_{bb}
 - No evidence for a peak is found

SS Dileptons + Jets + MET

- Selection
 - Exactly two SS e/mu
 - 2/3 jets, b-veto
 - Moderate MET
- Data-driven fake lepton estimate
- Prompt SS 2I bkg from MC
- Search for a bump in $M_{_{III}}$
 - No evidence for a peak is found

CMS Preliminary

- 1lepton : best at large chargino mass •
 - SS 2I and >2I contributes at low chargino mass و **(tb)**
- Combined 3 channels : • probe up to chargino mass ~ 200 GeV

 $\sqrt{s} = 8$ TeV, |L dt = 19.5 fb⁻¹

 $\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow (W \widetilde{\chi}_{1}^{0})(H \widetilde{\chi}_{1}^{0})$

combined observed combined expected

Chargino-Neutralino SUMMARY

19

Chargino-Chargino & Slepton-SLepton

Chargino-Chargino & Slepton-SLepton

Signature : 2 OS leptons + MET

Chargino-Chargino & Slepton-SLepton Selection

- Event Selection
 - 2 high Pt OS e/mu leptons with Z-veto
 - b-veto, moderate MET cut
 - M_{CT1}:Kinematic Reconstruction
 - Separate WW backgrounds
 - Fitted using data driven templates and MC
 - Data agrees well with prediction

Chargino-Chargino & Slepton-SLepton Results

95% C.L. upper limit on cross section (fb) 22

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 0^2

10

450

Neutralino-Neutralino

Neutralino-Neutralino decay modes

- R-parity-conserving gauge-mediated SUSY-breaking (GMSB) models are considered
 - Gravitino is a nearly massless LSP
- X^0_{12} and X^{\pm}_{0} are approximately mass-degenerate
- $X_{2}^{0}/X_{0}^{\pm} \rightarrow X_{1}^{0}$ + low pt standard model particle

- 4 leptons
- 3 leptons
- 2 leptons + 2 jets
- 4 b-jets : 🗸 New
- Higgs decays to gauge bosons (photon. W. Z) : under study

	Compact		
\parallel	P_2	$\tilde{\chi}_{j}$	Z کر کر Ĝ
	P_1	$\tilde{\chi}_{i}$	Ĝ کرک
:	$E_{\rm T}^{\rm miss}$ (GeV)	Observed	Total Bkg
	$1 \text{ OSSF, } 0 \tau$		
	0–30	1	2.3 ± 0.6
	30-50	3	1.2 ± 0.3
	50-100	2	1.5 ± 0.4
	> 100	2	0.8 ± 0.3
	1 OSSF , 1τ		
	0–30	33	25 ± 12
	30-50	11	11 ± 3.1
	50-100	9	9.3 ± 1.9
	> 100	2	2.9 ± 0.6
	2 OSSF, 0 τ		
	0–30	142	149 ± 46
	30-50	25	28 ± 11
	50-100	4	4.5 ± 2.7
	> 100	1	0.8 ± 0.3

Neutralino-Neutralino Z+Z+MET

- Event Selection
 - 4 leptons (up to one hadronic tau)
 - Classify events by #OSSF pairs, #hadronic taus, MET
- Main Background
 - ZZ : estimated from MC, with data-driven MET corrections
- Results
 - No sign of new physics

- Results based on Z(LQ)V(jj), 32+42, and combination
 - Combination of complementary channels \rightarrow <u>exclude µ 110-330 GeV</u>

Neutralino-Neutralino H+H+MET (4b)

- Event Selection
 - 4/5 Jets, at least 3 b's
 - Moderate MET cut
 - Cut on Dphi of MET and Jets to eliminate QCD and ttbar
- HH Reconstruction
 - $|\Delta m_{jj}| \equiv |m_{jj,1} m_{jj,2}|$ is minimized
 - $-|\Delta m_{jj}| < 20 \,\mathrm{GeV}$
 - $-100 < \langle m_{jj} \rangle < 140 \,\mathrm{GeV}$

Neutralino-Neutralino H+H+MET (4b)

- Background estimation
 - $\langle \mathbf{m}_{jj} \rangle$ and $|\Delta m_{jj}|$ are used to define signal and background regions
 - #Signal and background for different #b's are illustrated
 - #background can be estimated using an ABCD method
- Results
 - Binning vs. MET
 - No sign of new physics is observed

- For higgsino masses between \sim 270 and 350 GeV, the expected cross section upper limits reach the level of the expected production cross section.
- Because of a slight excess in the observed number of events compared to the estimated background, we are unable to exclude the signal model for any value of higgsino mass.

Summary and Conclusion

- A wide range of searches for electroweak SUSY production is performed with full 8 TeV dataset
- Different decay scenarios are considered :
 - 1,2,3,4 leptons
 - 2leptons + 2jets
 - 4b
- The results are interpreted in various simplified models spectra
- No sign of new physics is observed