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exploring gluon saturation regime

• Gluons dominate at small-x regime 	


– 99% of proton mass accounted by QCD                      

interaction 	


– Gluon PDF grows explosively at small x	



• Nonlinear evolution like BK evolution                                          
alternative to DGLAP, BFKL due to 
gluon recombination	



• Saturation regime: Q2<Q2
s(x)

Mechanism for 
gluon saturation
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nuclear amplification of saturation 

• Transverse gluon density 
scales with nuclear size 
at high energy/small-x      
⇒ Effective x much 
smaller in large nuclei

3

5�7(\, %) � 5��%
�/�( \�\ )�

DIS	
  2014

Q0=1	
  GeV,	
  x0=3x10-­‐4,λ=0.288
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saturation and dihadron correlation

trigger

associate

Δφ

transverse	
  plane

• Dijet/dihadron correlation sensitive to the transverse 
momentum imbalance 	



• In the saturation regime (< Qs), large transverse 
momentum imbalance for the hadron pairs expected,  
which leads to back-to-back jet/hadron pairs to de-
correlation
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the comparison between the theory calculation and the
future electron-ion collider (EIC) [14,15] data on dihadron
correlations.
It has been a challenging task to constrain to what extent

saturation is present in available experimental data [16].
Azimuthal dihadron correlations are considered to be a very
compelling measurement to tell whether the partonic
system under study has reached the saturation regime
[17]. The azimuthal angle ðΔϕÞ distribution of correlated
high-pT hadron pairs uncovers the underlying jet properties
on a statistical basis. The near-side peak (Δϕ ¼ 0) of this
Δϕ distribution is dominated by the fragmentation from the
leading jet, while the away-side peak (Δϕ ¼ π) is expected
to be dominated by back-to-back jets produced in the hard
2 → 2 scattering. At sufficiently high parton densities,
when saturation effects dominate, incoming gluons nor-
mally carry a typical transverse momentum at a scale of
Qs > Q, which significantly increases the transverse
momentum imbalance of the back-to-back jets. As a result,
saturated gluons from the target tend to smear the back-to-
back picture and suppress the away-side peak in the Δϕ
distribution.
The observed suppressions in dihadron correlation mea-

surements at forward rapidities performed in dþ Au
ffiffiffi
s

p
¼

200 GeV collisions at RHIC [18–22] are perhaps the most
suggestive evidence of the onset of the saturation regime in
present data. Rather significant suppression of the away-
side correlation is observed, when one compares the data
for central dþ Au collisions to peripheral dþ Au colli-
sions at forward rapidities. The qualitative feature of this
suppression was first predicted by Marquet [23] based on
saturation physics/CGC calculations. The strength of back-
to-back correlations and the depletion of the away-side
peak measured in these experiments can be quantitatively
described in the saturation formalism [24–26].
At an EIC, we can access dihadron correlations in deep

inelastic scattering (DIS) data from eþ A and eþ p
collisions, which can provide a clean and well-controlled
signature of saturation physics complementary to the
current dþ Au or pþ A measurements. They also provide
the opportunity to study a fundamental gluon distribution
that cannot be accessed today. It has been shown in the
recent theoretical development of small x physics that there
are two different unintegrated gluon distributions (UGDs);
namely the Weizsäcker-Williams (WW) gluon distribution
and the dipole gluon distribution, which are involved in the
calculation of various observables [27]. Since all other
gluon distributions appearing in various processes can be
constructed from these two UGDs in the large Nc limit of
QCD, they can be considered as the universal and funda-
mental building blocks for all UGDs. Furthermore, theWW
gluon distribution can be interpreted as the gluon density in
the light cone gauge, while the dipole gluon distribution has
no such probabilistic interpretation. In addition, we want to
emphasize that theWW gluon distribution only appears in a

few physical processes exclusively, and currently there is
very little knowledge about its behavior. Fortunately, the
WW gluon distribution is the only UGD involved in the
DIS dijet process [28], which provides us a unique and
clean means to measure the WW gluon distribution.
In this paper, based on the most recent theoretical

developments in saturation physics, we perform a detailed
study of the feasibility, expected precision, and physics
impact of dihadron correlation measurements on gluon
dynamics in the small x region at a future high-luminosity,
high-energy EIC. We will demonstrate that, at a future EIC
such as eRHIC at BNL or MEIC at Thomas Jefferson
National Laboratory (JLab) (see Sec. 5 of Ref. [15] and
references therein for more details), it is feasible to perform
the discussed dihadron correlation measurement even with
a moderate integrated luminosity of L ¼ 1 fb−1. We
present results for two lepton-nucleus beam energy con-
figurations, 10 GeV × 100 GeV and 20 GeV × 100 GeV,
and compare the results for proton and gold beams. We use
pseudodata generated by the Monte Carlo generator PYTHIA
[29] integrated with nuclear PDFs, geometry and energy
loss to obtain a nonsaturation baseline. The framework of
Ref. [28] is used to obtain numerical predictions and to
study the size of the suppression of dihadron correlations in
a saturation formalism. Table I shows the definitions of the
kinematic variables used in this study.
The rest of this article is organized as follows: in Sec. II,

we discuss the theoretical framework used for the pre-
diction of saturation effects in the dihadron correlation
measurement. A brief comparison of dihadron correlations
in eþ Aversus pþ A is provided in Sec. III. In Sec. IV, we
give an overview of the planned EIC project and present
simulation results for dihadron correlations at an EIC.
Finally, we summarize and conclude in Sec. V.

II. DIHADRON CORRELATIONS IN THE
SATURATION FORMALISM

According to the effective small-x kt factorization
established in Ref. [28], which is briefly summarized
above, the back-to-back correlation limit of the dihadron
production cross section can be used to directly probe the
WW gluon distribution xGð1Þðx; q⊥Þ. As a comparison, the
hadron production in semi-inclusive deep inelastic scatter-
ing (SIDIS), as shown in Ref. [30], is related to the
so-called dipole gluon distributions xGð2Þðx; q⊥Þ.
The coincidence probability CðΔϕÞ ¼ NpairðΔϕÞ

Ntrig
is a com-

monly exploited observable in dihadron correlation studies,
in which NpairðΔϕÞ is the yield of the correlated trigger and
associate particle pairs, while Ntrig is the trigger particle
yield. This correlation function CðΔϕÞ depends on the
azimuthal angle difference Δϕ between the trigger and
associate particles. In terms of theoretical calculation, the
correlation function is defined as
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dihadron correlation in saturation formalism
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Pair cross-section (Weizsäcker-Williams gluon distribution G(1))

Trigger particle cross-section (color dipole gluon distribution G(2))

~

Correlation Function

CðΔϕÞ ¼ 1

dσγ
$þA→h1þX
SIDIS
dzh1

dσγ
$þA→h1þh2þX
tot

dzh1dzh2dΔϕ
: (1)

Let us consider a process of a virtual photon scattering
on a dense nuclear target producing two final state back-to-
back qq̄ jets: γ$ þ A → qðk1Þ þ q̄ðk2Þ þ X, in which
k1 and k2 are the four momenta of the two outgoing
quarks. This process is the dominant one in the low-x

region, since the gluon distribution is much larger than
the quark distributions inside a hadron at high energy.
The back-to-back correlation limit indicates that the trans-
verse momentum imbalance is much smaller than each
individual momentum: q⊥ ¼ jk1⊥ þ k2⊥j ≪ P⊥, with P⊥
defined as ðk1⊥ − k2⊥Þ=2. At leading order (LO), the
dihadron total cross section, which includes both the
longitudinal and transverse contributions, can be written
as follows [28]:

dσγ
$þA→h1þh2þX
tot

dzh1dzh2d2ph1⊥d2ph2⊥
¼ C

Z
1−zh2

zh1
dzq

zqð1 − zqÞ
z2h2z

2
h1

d2p1⊥d2p2⊥F ðxg; q⊥ÞHtotðzq; k1⊥; k2⊥Þ

×
X

q

e2qDq

!
zh1
zq

; p1⊥

"
Dq̄

!
zh2

1 − zq
; p2⊥

"
; (2)

where C ¼ S⊥Ncαem
2π2 gives the normalization factor, with S⊥

being the transverse area of the target, zq is the longitudinal
momentum fraction of the produced quark with respect to
the incoming virtual photon, Htot is the combined hard
factor, k1⊥ and k2⊥ are the transverse momenta of the two
quarks, while ph1⊥ and ph2⊥ are the transverse momenta of
the two corresponding produced hadrons, respectively.
F ðxg; q⊥Þ comes from the relevant WW gluon distribution
xGð1Þðxg; q⊥Þ evaluated with the gauge links for a large
nucleus at small x by using the McLerran-Venugopalan
model [12],

F ðxg;q⊥Þ ¼
1

2π2

Z
d2r⊥e−iq⊥r⊥

1

r2⊥

#
1− exp

!
−
1

4
r2⊥Q

2
s

"$
;

(3)

in which xg ¼
zqp2

h1⊥
z2h1s

þ ð1−zqÞp2
h2⊥

z2h2s
þ Q2

s is the longitudinal

momentum fraction of the small-x gluon with respect to the

target hadron and Qs is the gluon saturation scale.
Dqðzhzq ; p⊥Þ represents the transverse momentum dependent
fragmentation functions, where p⊥ shows the additional
transverse momentum introduced by fragmentation proc-
esses. There can be a more sophisticated model description
of the WW gluon distribution, which involves a numerical
solution to the BK-type evolution for the WW gluon
distribution [31,32]. But studying the impact of these PDFs
is beyond the scope of the work presented here.
In principle, the so-called linearly polarized gluon

distribution [33,34] also contributes to the dihadron corre-
lation and can be systematically taken into account. This
part of the contribution comes from an averaged quantum
interference between a scattering amplitude and a complex
conjugate amplitude with active gluons linearly polarized
in two orthogonal directions in the azimuthal plane.
Numerical calculation shows that this contribution is
negligible for dihadron back-to-back correlations. Also,
this type of contribution vanishes when the dihadron

TABLE I. Kinematic variables.

q ¼ ðEe − E0
e;~l − ~l0Þ 4-momentum of virtual photon

Q2 ¼ −q2 Virtuality of exchanged photon
xBj ¼ Q2

2P·q Bjorken x, momentum fraction of the incoming nucleon taken by the struck quark in the electron rest frame
y ¼ P·q

P·l Energy fraction of virtual photon with respect to the incoming electronffiffiffi
s

p
Center of mass energy

xg Longitudinal momentum fraction of gluon involved in hard interactions
zh;q ¼ P·Ph;q

P·q Energy fraction of a hadron or quark with respect to virtual photon in the target rest frame
pT Transverse momentum of final state hadron with respect to virtual photon
Δϕ Azimuthal angle difference of the trigger ~pT

trig and associate ~pT
assoc

η ¼ − ln tanðθ=2Þ Pseudorapidity of the particles in the lab frame
q⊥ Initial transverse momentum of gluons in the γ$p center of mass frame
k1⊥; k2⊥ Transverse momentum of the dijets in the γ$p center of mass frame
ph1⊥; ph2⊥ Transverse momentum of the trigger/associate particle in the γ$p center of mass frame
p̂T Transverse momentum of final state partons in the center of mass frame of hard interaction
kT Intrinsic transverse momentum of partons in the nucleon
pfrag
T Transverse momentum with respect to jet direction from hadronization

Qs Saturation scale
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correlation function is averaged over the azimuthal angle of
the trigger particle.
As to the single-inclusive-hadron production cross sec-

tion, which enters the denominator of the definition of the
correlation function CðΔϕÞ, it can be calculated from the
saturation physics/CGC formalism [30] as follows:

dσγ
#þA→h1þX
SIDIS

dzh1d2ph1⊥
¼C

Z
1

zh1
dzq

Z
d2q⊥Fxgðq⊥ÞHSIDISðk⊥;q⊥;QÞ

×
X

q

e2q
zq
z2h1

Dq

!
zh1
zq

;p⊥

"
; (4)

where HSIDIS is the q⊥ dependent hard factor for SIDIS,
which includes both the longitudinal and transverse
photon contributions. Here Fxgðq⊥Þ, which is related to
xGð2Þðxg; q⊥Þ, is the Fourier transform of the dipole cross
section,

Fxgðq⊥Þ ¼
Z

d2r
2π2

eiq⊥·r⊥
1

Nc
TrhUðr⊥ÞU†ð0Þiρ

≃ 1

πQ2
sA
exp

#
−

q2⊥
Q2

sA

$
: (5)

It has been suggested in Refs. [31,32] that both dipole and
WW gluon distributions have similar geometric scaling
behavior. Therefore, one can parametrize these gluon
distributions following the Golec-Biernat Wüsthoff
(GBW) [35] model calculation, in which Q2

sAðxÞ ¼
cðbÞA1=3Q2

s0ðx=x0Þ−λ, with Qs0 ¼ 1 GeV, x0 ¼ 3.04×
10−4 and λ ¼ 0.288. The gluon saturation momentum is
related to Q2

sAðxÞ by Q2
sðxÞ ¼ 2N2

c
N2

c−1
Q2

sAðxÞ. cðbÞ ¼
cð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=R2

p
gives the nuclear profile dependence

with a radius R, where b is the impact parameter. As it
is not an easy task to determine the exact impact parameter
in eþ A collisions, a median number cðbÞ ¼ 0.8 is used
for the estimation, which is supposed to average the nucleus
geometry effectively. A parameterization of the fragmen-
tation function from De Florian-Sassot-Stratmann [36],

Dðz; p⊥Þ ¼ DðzÞ 1
πhp2

⊥i
e

−p2⊥
hp2⊥i with hp2

⊥i ¼ 0.2 GeV2, is used

to compute the hadron production.
By utilizing Eqs. (2) and (4), one can straightforwardly

calculate the coincidence probability. The theoretical
prediction at the Born level for the suppression of the
away-side of the dihadron correlation measurement is
shown by the solid curves in Fig. 1.
All the above results are estimated based on the LO Born

level contribution. At the EIC energy scale the one-loop
contribution [37], which is also known as the so-called
Sudakov factor, can be important as well. To include the
Sudakov factor contribution at leading double logarithm
level, one can rewrite the relevant WW distribution as
follows [38]:

F ðxg; q⊥Þ ¼
1

2π2

Z
d2r⊥e−iq⊥r⊥

1

r2⊥

#
1 − exp

!
−
1

4
r2⊥Q

2
s

"$

× exp
#
−
αsNc

4π
ln2

K2r2⊥
c20

$
; (6)

where K2 represents the hard momentum scale in two-
particle production processes. It can be chosen as K2 ¼ P2

⊥
or K2 ¼ Q2, depending on which one is larger, and c0 ¼
2e−γE with the Euler constant γE. It is known that the single
logarithmic terms as well as the next-to-leading order
(NLO) contribution of the Sudakov factor also have sizable
contributions compared to the above leading double log-
arithmic contribution. Therefore, the numerical value of αs
in the Sudakov factor used in this calculation may be
different from what one normally expects according to a
QCD running coupling constant calculation.
One needs to pay attention to the applicability of this

calculation. As the GBWmodel is not sufficient to describe
the UGDs in the region where q⊥ is much larger than Qs,
we should limit this calculation to the saturation region
(xg < 0.01) to ensure the GBW model can be applied.
Additionally, to ensure that the power corrections to the
two-particle production are negligible, one needs the
magnitude of the jet transverse momenta P⊥ to be much
larger than Qs.
The current calculations are performed for Q2 of the

same order as P2
⊥. For pair production, the Sudakov factor

is usually due to a scale difference between P⊥ and the dijet
momentum imbalance q⊥. Because we have required that
P⊥ ≫ q⊥ as discussed above, it is necessary to include the
Sudakov contribution. As for the trigger hadron inclusive
cross section, the Sudakov factor is not important, since the
trigger hadron pT is of the same order as Q and P⊥. An
illustration of this Sudakov effect with αs ¼ 0.35 can be
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FIG. 1 (color online). π0-correlation curves calculated in the
saturation formalism at 10 GeV × 100 GeV for eþ p (thick line)
and eþ Au (thin line) with (dashed curve) and without (solid curve)
theSudakovfactor.Thekinematicschosenarey ¼ 0.7,Q2 ¼ 1 GeV2,
zh1 ¼ zh2 ¼ 0.3,ph1⊥ > 2 GeV=c, 1 GeV=c < ph2⊥ < ph1⊥.
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correlation function is averaged over the azimuthal angle of
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tion, which enters the denominator of the definition of the
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the UGDs in the region where q⊥ is much larger than Qs,
we should limit this calculation to the saturation region
(xg < 0.01) to ensure the GBW model can be applied.
Additionally, to ensure that the power corrections to the
two-particle production are negligible, one needs the
magnitude of the jet transverse momenta P⊥ to be much
larger than Qs.
The current calculations are performed for Q2 of the

same order as P2
⊥. For pair production, the Sudakov factor

is usually due to a scale difference between P⊥ and the dijet
momentum imbalance q⊥. Because we have required that
P⊥ ≫ q⊥ as discussed above, it is necessary to include the
Sudakov contribution. As for the trigger hadron inclusive
cross section, the Sudakov factor is not important, since the
trigger hadron pT is of the same order as Q and P⊥. An
illustration of this Sudakov effect with αs ¼ 0.35 can be
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FIG. 1 (color online). π0-correlation curves calculated in the
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CðΔϕÞ ¼ 1

dσγ
$þA→h1þX
SIDIS
dzh1

dσγ
$þA→h1þh2þX
tot

dzh1dzh2dΔϕ
: (1)

Let us consider a process of a virtual photon scattering
on a dense nuclear target producing two final state back-to-
back qq̄ jets: γ$ þ A → qðk1Þ þ q̄ðk2Þ þ X, in which
k1 and k2 are the four momenta of the two outgoing
quarks. This process is the dominant one in the low-x

region, since the gluon distribution is much larger than
the quark distributions inside a hadron at high energy.
The back-to-back correlation limit indicates that the trans-
verse momentum imbalance is much smaller than each
individual momentum: q⊥ ¼ jk1⊥ þ k2⊥j ≪ P⊥, with P⊥
defined as ðk1⊥ − k2⊥Þ=2. At leading order (LO), the
dihadron total cross section, which includes both the
longitudinal and transverse contributions, can be written
as follows [28]:

dσγ
$þA→h1þh2þX
tot

dzh1dzh2d2ph1⊥d2ph2⊥
¼ C

Z
1−zh2

zh1
dzq

zqð1 − zqÞ
z2h2z

2
h1

d2p1⊥d2p2⊥F ðxg; q⊥ÞHtotðzq; k1⊥; k2⊥Þ

×
X

q

e2qDq

!
zh1
zq

; p1⊥

"
Dq̄

!
zh2

1 − zq
; p2⊥

"
; (2)

where C ¼ S⊥Ncαem
2π2 gives the normalization factor, with S⊥

being the transverse area of the target, zq is the longitudinal
momentum fraction of the produced quark with respect to
the incoming virtual photon, Htot is the combined hard
factor, k1⊥ and k2⊥ are the transverse momenta of the two
quarks, while ph1⊥ and ph2⊥ are the transverse momenta of
the two corresponding produced hadrons, respectively.
F ðxg; q⊥Þ comes from the relevant WW gluon distribution
xGð1Þðxg; q⊥Þ evaluated with the gauge links for a large
nucleus at small x by using the McLerran-Venugopalan
model [12],

F ðxg;q⊥Þ ¼
1

2π2

Z
d2r⊥e−iq⊥r⊥

1

r2⊥

#
1− exp

!
−
1

4
r2⊥Q

2
s

"$
;

(3)

in which xg ¼
zqp2

h1⊥
z2h1s

þ ð1−zqÞp2
h2⊥

z2h2s
þ Q2

s is the longitudinal

momentum fraction of the small-x gluon with respect to the

target hadron and Qs is the gluon saturation scale.
Dqðzhzq ; p⊥Þ represents the transverse momentum dependent
fragmentation functions, where p⊥ shows the additional
transverse momentum introduced by fragmentation proc-
esses. There can be a more sophisticated model description
of the WW gluon distribution, which involves a numerical
solution to the BK-type evolution for the WW gluon
distribution [31,32]. But studying the impact of these PDFs
is beyond the scope of the work presented here.
In principle, the so-called linearly polarized gluon

distribution [33,34] also contributes to the dihadron corre-
lation and can be systematically taken into account. This
part of the contribution comes from an averaged quantum
interference between a scattering amplitude and a complex
conjugate amplitude with active gluons linearly polarized
in two orthogonal directions in the azimuthal plane.
Numerical calculation shows that this contribution is
negligible for dihadron back-to-back correlations. Also,
this type of contribution vanishes when the dihadron

TABLE I. Kinematic variables.

q ¼ ðEe − E0
e;~l − ~l0Þ 4-momentum of virtual photon

Q2 ¼ −q2 Virtuality of exchanged photon
xBj ¼ Q2

2P·q Bjorken x, momentum fraction of the incoming nucleon taken by the struck quark in the electron rest frame
y ¼ P·q

P·l Energy fraction of virtual photon with respect to the incoming electronffiffiffi
s

p
Center of mass energy

xg Longitudinal momentum fraction of gluon involved in hard interactions
zh;q ¼ P·Ph;q

P·q Energy fraction of a hadron or quark with respect to virtual photon in the target rest frame
pT Transverse momentum of final state hadron with respect to virtual photon
Δϕ Azimuthal angle difference of the trigger ~pT

trig and associate ~pT
assoc

η ¼ − ln tanðθ=2Þ Pseudorapidity of the particles in the lab frame
q⊥ Initial transverse momentum of gluons in the γ$p center of mass frame
k1⊥; k2⊥ Transverse momentum of the dijets in the γ$p center of mass frame
ph1⊥; ph2⊥ Transverse momentum of the trigger/associate particle in the γ$p center of mass frame
p̂T Transverse momentum of final state partons in the center of mass frame of hard interaction
kT Intrinsic transverse momentum of partons in the nucleon
pfrag
T Transverse momentum with respect to jet direction from hadronization

Qs Saturation scale
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momentum fraction of the produced quark with respect to
the incoming virtual photon, Htot is the combined hard
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fragmentation functions, where p⊥ shows the additional
transverse momentum introduced by fragmentation proc-
esses. There can be a more sophisticated model description
of the WW gluon distribution, which involves a numerical
solution to the BK-type evolution for the WW gluon
distribution [31,32]. But studying the impact of these PDFs
is beyond the scope of the work presented here.
In principle, the so-called linearly polarized gluon

distribution [33,34] also contributes to the dihadron corre-
lation and can be systematically taken into account. This
part of the contribution comes from an averaged quantum
interference between a scattering amplitude and a complex
conjugate amplitude with active gluons linearly polarized
in two orthogonal directions in the azimuthal plane.
Numerical calculation shows that this contribution is
negligible for dihadron back-to-back correlations. Also,
this type of contribution vanishes when the dihadron
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η ¼ − ln tanðθ=2Þ Pseudorapidity of the particles in the lab frame
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!
parton shower in dihadron correlation 	



- Sudakov effect in nuclei 

• Nuclear Beyond leading order 
calculation is achieved by 
inclusion of Sudakov factor at 
leading double log level in 
WW gluon distribution 
(O(Q2)~O(PT

2))	


• Parton shower effect is 

effectively cast into Sudakov 
factor in saturation calculation 
for dihadron correlation

6

correlation function is averaged over the azimuthal angle of
the trigger particle.
As to the single-inclusive-hadron production cross sec-

tion, which enters the denominator of the definition of the
correlation function CðΔϕÞ, it can be calculated from the
saturation physics/CGC formalism [30] as follows:

dσγ
#þA→h1þX
SIDIS

dzh1d2ph1⊥
¼C

Z
1

zh1
dzq

Z
d2q⊥Fxgðq⊥ÞHSIDISðk⊥;q⊥;QÞ

×
X

q

e2q
zq
z2h1

Dq

!
zh1
zq

;p⊥

"
; (4)

where HSIDIS is the q⊥ dependent hard factor for SIDIS,
which includes both the longitudinal and transverse
photon contributions. Here Fxgðq⊥Þ, which is related to
xGð2Þðxg; q⊥Þ, is the Fourier transform of the dipole cross
section,

Fxgðq⊥Þ ¼
Z

d2r
2π2

eiq⊥·r⊥
1

Nc
TrhUðr⊥ÞU†ð0Þiρ

≃ 1

πQ2
sA
exp

#
−

q2⊥
Q2

sA

$
: (5)

It has been suggested in Refs. [31,32] that both dipole and
WW gluon distributions have similar geometric scaling
behavior. Therefore, one can parametrize these gluon
distributions following the Golec-Biernat Wüsthoff
(GBW) [35] model calculation, in which Q2

sAðxÞ ¼
cðbÞA1=3Q2

s0ðx=x0Þ−λ, with Qs0 ¼ 1 GeV, x0 ¼ 3.04×
10−4 and λ ¼ 0.288. The gluon saturation momentum is
related to Q2

sAðxÞ by Q2
sðxÞ ¼ 2N2

c
N2

c−1
Q2

sAðxÞ. cðbÞ ¼
cð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=R2

p
gives the nuclear profile dependence

with a radius R, where b is the impact parameter. As it
is not an easy task to determine the exact impact parameter
in eþ A collisions, a median number cðbÞ ¼ 0.8 is used
for the estimation, which is supposed to average the nucleus
geometry effectively. A parameterization of the fragmen-
tation function from De Florian-Sassot-Stratmann [36],

Dðz; p⊥Þ ¼ DðzÞ 1
πhp2

⊥i
e

−p2⊥
hp2⊥i with hp2

⊥i ¼ 0.2 GeV2, is used

to compute the hadron production.
By utilizing Eqs. (2) and (4), one can straightforwardly

calculate the coincidence probability. The theoretical
prediction at the Born level for the suppression of the
away-side of the dihadron correlation measurement is
shown by the solid curves in Fig. 1.
All the above results are estimated based on the LO Born

level contribution. At the EIC energy scale the one-loop
contribution [37], which is also known as the so-called
Sudakov factor, can be important as well. To include the
Sudakov factor contribution at leading double logarithm
level, one can rewrite the relevant WW distribution as
follows [38]:

F ðxg; q⊥Þ ¼
1

2π2

Z
d2r⊥e−iq⊥r⊥

1

r2⊥

#
1 − exp

!
−
1

4
r2⊥Q

2
s

"$

× exp
#
−
αsNc

4π
ln2

K2r2⊥
c20

$
; (6)

where K2 represents the hard momentum scale in two-
particle production processes. It can be chosen as K2 ¼ P2

⊥
or K2 ¼ Q2, depending on which one is larger, and c0 ¼
2e−γE with the Euler constant γE. It is known that the single
logarithmic terms as well as the next-to-leading order
(NLO) contribution of the Sudakov factor also have sizable
contributions compared to the above leading double log-
arithmic contribution. Therefore, the numerical value of αs
in the Sudakov factor used in this calculation may be
different from what one normally expects according to a
QCD running coupling constant calculation.
One needs to pay attention to the applicability of this

calculation. As the GBWmodel is not sufficient to describe
the UGDs in the region where q⊥ is much larger than Qs,
we should limit this calculation to the saturation region
(xg < 0.01) to ensure the GBW model can be applied.
Additionally, to ensure that the power corrections to the
two-particle production are negligible, one needs the
magnitude of the jet transverse momenta P⊥ to be much
larger than Qs.
The current calculations are performed for Q2 of the

same order as P2
⊥. For pair production, the Sudakov factor

is usually due to a scale difference between P⊥ and the dijet
momentum imbalance q⊥. Because we have required that
P⊥ ≫ q⊥ as discussed above, it is necessary to include the
Sudakov contribution. As for the trigger hadron inclusive
cross section, the Sudakov factor is not important, since the
trigger hadron pT is of the same order as Q and P⊥. An
illustration of this Sudakov effect with αs ¼ 0.35 can be
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FIG. 1 (color online). π0-correlation curves calculated in the
saturation formalism at 10 GeV × 100 GeV for eþ p (thick line)
and eþ Au (thin line) with (dashed curve) and without (solid curve)
theSudakovfactor.Thekinematicschosenarey ¼ 0.7,Q2 ¼ 1 GeV2,
zh1 ¼ zh2 ¼ 0.3,ph1⊥ > 2 GeV=c, 1 GeV=c < ph2⊥ < ph1⊥.
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saturation formalism with Sudakov factor  

• Strong suppression 
expected at away-side of 
the correlation function	



• Away-side suppression is 
due to a combination of 
Sudakov factor and 
saturation effects	



• Nuclear modification of 
parton shower at leading 
order is small in the 
saturation formalism 

Parton shower in nuclei not well known: Study to distinguish the 
contribution from Sudakov and saturation can be achieved by running 
with different target types and/or utilizing the near side peak scanned 
with different Q2         7



 QCD processes contributing to         	


back-to-back dihadron in DIS at EIC energies  

• Photon-Gluon Fusion dominates (~70%) away-side correlation 	



• Processes without gluon coupling < ~20%

PYTHIA

DIS	
  2014



DIS	
  2014

Particle yield from different          
underlying process

9

e+p 10 GeV x 100 GeV	


1<Q2<20 GeV2	



0.01<y<0.95

Charged particle production Particle	
  production	
  in	
  all	
  process

•High-pT particles generated mainly 
from gluon/quark dijet process	


•Pions make up of the major part of 
the produced final state particles
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impact on dihadron correlation function 
from different QCD effects 

10

• Near-side peak width 
mainly affected by final 
state parton shower and 
fragmentation	


!

• Away-side peak width 
dominated by initial state 
parton shower

parton showers, fragmentation pT and possible resonance
decays in the fragmentation.
As the saturation physics discussed above is mainly

about the gluon dynamics, in order to be able to consis-
tently compare with the theoretical dihadron cross section
in Sec. II, we need to include gluon dijet channels from the
PGF and gluon-initiated resolved process in the compari-
son. However, as the measured observable in the real
experiment is a mixture of different process, as illustrated in
Eq. (7), we have to know how significant the signal from
gluon saturation manifests itself in a mixed event sample.
From the saturation-based predictions, a sizable suppres-
sion of the away-side peak from eþ p to eþ A is
expected.
In the meanwhile, it is crucial to point out that parton

showers suppress the away-side peak of the dihadron
correlation function just as saturation does. However,
currently it is still unclear how the parton shower effect
is modified in the nuclear medium, without which it is hard
to draw any definite conclusions about the saturation
effects, as parton showers and saturation effects are always
entangled. Nevertheless, thanks to the large kinematic

coverage of eRHIC, one can explore the nuclear depend-
ence of parton showers outside the saturation region by
measuring dihadron correlations for different nuclei in the
high Q2 regime. This kinematic regime has a significant
phase space for parton showers for this observable. More
important, the measurement of dihadron correlations gives
the opportunity to use the near-side peak of the correlation
function as a reference to study the nuclear medium effects
on parton showers as the saturation effects only manifest
themselves in the away-side peak, as shown in Fig. 7.
In the saturation formalism, the parton shower contri-

bution is effectively cast into the Sudakov factor for the DIS
dijet process at small x. To illustrate this point, Fig. 9 shows
the correlation function simulated with and without parton
showers, compared to the corresponding theoretical pre-
dictions with and without Sudakov effects. The filled
circles represent the PYTHIA simulation for eþ p without
parton showers, and they agree very well with the solid line
from the theoretical prediction including saturation effects,
but excluding Sudakov effects. The comparison (empty
circles and dashed line) between simulated PYTHIA eþ p
data including parton showers and the theoretical predic-
tions with saturation plus Sudakov effects is also good,
especially considering the model uncertainties. Thus, the
agreement in eþ p collisions enables one to estimate the
nuclear medium effects on parton showers in the theoretical
predictions for saturation including Sudakov effects.
Since the saturation effect decouples from hadronization,

it does not depend on which specific particle type is being
detected. Although the theoretical prediction is made for
π0, the suppression factor from eþ p to eþ A still holds
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FIG. 8 (color online). Simulated data points for particle
correlations for charged hadrons in eþ p and eþ Au collisions
with beam energies of 20 GeV × 100 GeV and
1.0 GeV2 < Q2 < 1.5 GeV2, 0.65 < y < 0.75, ptrig

T > 2 GeV=c,
1 GeV=c < passoc

T < ptrig
T , 0.25 < ztrigh , zassoch < 0.35. Lines are the

fit for eþ p or eþ A points. The shaded band shows the
uncertainty due to the EPS09 nuclear PDFs.

TABLE II. Relative RMS for the Δϕ distribution from eþ p
collisions including different effects influencing the width of the
near-and away-side peaks compared to the baseline RMS with all
the effects included (bottom row).

Near-side Δϕ RMS Away-side Δϕ RMS

kT 0.21 0.25
kT þ IS 0.30 0.72
kT þ ISþ FS 0.65 0.81
kT þ ISþ FSþ pfrag

T 1.00 1.00
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FIG. 9 (color online). π0 Δϕ correlation comparing PYTHIA

and theoretical saturation calculations for eþ p 10 GeV ×
100 GeV for events from PGF and resolved gluon channel
subprocesses at 1.0 GeV2 < Q2 < 2.0 GeV2, 0.65 < y < 0.75,
ptrig
T > 2 GeV=c, 1 GeV=c < passoc

T < ptrig
T , 0.25 < ztrigh ,

zassoch < 0.35. The solid and dashed curves show theoretical
predictions including saturation effects for eþ p without and
with the Sudakov factor, respectively. The filled and empty
circles illustrate PYTHIA simulations for eþ p without and with
parton showers.
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  2014

kinematics access

• xg coverage can be 
constrained by selecting 
certain kinematics bins	



• EIC accessible kinematics 
region covers the transition 
to saturation regime
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experimental measurements of dihadron 
correlations at EIC

η > 0η < 0 

p e-

Device acceptance smearing

Barrel	
  track -­‐1<η<1 0.1%*p

Endcap	
  track 1<|η|<2 1%*p

Endcap	
  Cal -4.5<η<-2 1.78%	
  *	
  sqrt(E)	
  +	
  0.69%	
  *	
  E
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dihadron correlation with non-saturation 
prediction 

ep/eAu 20x100 GeV	


Cuts:	


0.6<y<0.8	


1 <Q2<2 GeV2	



pt1>2 GeV,  1 GeV<pt2<pt1	



0.2<z1,z2<0.4	


2560 < ν < 3400 GeV	


<xbj>=2.59x10-4	



<xg>=3.42x10-2	



Charged particles

Nuclear effects:	


• nPDF EPS09	


• Cold nuclear medium 
energy loss 
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• EIC expected data from 1 fb-1 integrated luminosity at 10,20(e)x100(p/Au) 
GeV	



• Saturation / no-saturation can be clearly distinguished 	



• Strong suppression cannot be reproduced by the non-saturation model

saturation prediction and expected 
measurement at EIC

<xbj>=2.59x10-4 

<xg>=3.42x10-2 
<xbj>=5.16x10-4 

<xg>=4.59x10-2 
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summary

• Dihadrons (Dijet) in DIS ep, eA provide gluon 
distributions.	



•  Nuclear dependent QCD effects and gluon 
saturation can be measured in dihadron correlations 
at an EIC over a broad kinematic range.	



• The onset of the projected saturation region is well 
covered by the EIC energy regime and the proposed 
luminosity and the detectors are suitable to measure 
the gluon saturation with high precision through 
dihadron correlations.
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Backup

16



DIS	
  2014

Monte-Carlo simulation for dihadron 
correlation in ep/eA
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A	
  hybrid	
  model	
  consisting	
  of	
  
DPMJet	
  and	
  PYTHIA	
  with	
  nPDF	
  
EPS09.
Nuclear	
  geometry	
  

Nuclear	
  PDF

Parton	
  level	
  interaction,	
  
parton	
  shower	
  and	
  jet	
  
fragmentation

Nuclear	
  remnant	
  
evaporation

Energy	
  loss	
  effect	
  for	
  cold	
  
nuclear	
  medium

DPMJET 

EPS09 

PYTHIA 

Energy loss module by 
Salgado&Wiedeman

•Higher	
  order	
  effects	
  (parton	
  
shower)	
  

•Noncollinear	
  effects	
  (intrinsic	
  
kT)	
  

•Fragmentation	
  process	
  (Jetset)	
  

A non Saturation model

Decorrelation	
  of	
  dihadron:
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Connections to pA
– Control initial/final state	



– eA experimentally much cleaner, no pedestal	



• no “spectator” background to subtract 	



– Access to the exact kinematics of the DIS process 
(x, Q2)	



– Constrain WW gluon distribution which is rarely 
known from other measurements
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