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Underlying Event 

• Underlying Event (UE) – everything except hard interaction objects with their ISR+FSR 
although the UE and the hard interaction can not be cleanly separated 

• UE contains: 
– Products of soft hadronization of the colored proton remnants 
– Multiple parton interactions (MPI) with their ISR+FSR. MPI plays important role  in soft particle 

production at the current LHC energy 
• The low momentum QCD processes dominate the UE and they can not be reliably calculated 

with the perturbative QCD 
• Phenomenological MC generators are used to model the UE and they contain a number of 

tuning parameters which should be fitted to the experimental data 
• The correct modelling of the UE is important as it is a background to all hard QCD processes 

of interest 
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UE Analysis 
• Hard process used in this analysis is a jet 

production. The results are preliminary, the 
final analysis is in preparation 

• The UE objects are charged and neutral 
particles reconstructed on the base of tracks 
and calorimeter clusters 

• Beam transverse plane is subdivided in 4 
regions shown at the figure. Δφ is the 
azimuthal angle between the leading PT jet 
and a particle 

• Towards and away regions are dominated 
by the hard process, transverse regions are 
sensitive to the UE 

• The transverse regions are distinguished on 
event-by-event base as having more or less 
activity and referenced as trans-max and 
trans-min correspondingly 
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Event Selection 
• 37 pb-1 of low pile-up pp interactions at 7 TeV taken in 2010 have been 

used 
• Two different event topologies: 

– Events with at least one jet 
– Events with an exclusive dijet 

• Jet/event selection 
– Triggered anti-kt calorimeter jets with R=0.4 
– jet PT > 20 GeV, |y| <2.8 
– Primary vertex with at least 5 charged tracks 
– Pile-up veto: no additional vertices with more than 2 tracks 

• Additionally for dijets 
– Balance of the leading and sub-leading jets: PT(sub) / PT(lead) > 0.5 
– Back-to-back topology: Δφ(lead,sub) > 2.5 
– Events with additional jets are rejected 

• The jets were fully corrected for detector effects 
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UE Objects Selection 
• Reconstructed charged tracks and topological 3D clusters of 

calorimeter cells are used to characterize UE  
• Charged tracks reconstructed in the Inner Detector (ID): 

– PT > 0.5 GeV, |η| < 2.5 
– Quality cuts on the ID hits and reconstruction χ2 
– Transverse and longitudinal impact parameters with respect to the primary vertex 

< 1.5 mm 

• Clusters of calorimeter cells with   |η| < 2.5 as for the tracks or in the 
full range |η| < 4.9 

• The following observables as a function of PT
lead  (transverse 

momentum of the leading jet) are used to study UE: 
– d2Nch/dηdφ ‒ mean charge particle density per unit η-φ 
– d2ΣPT/dηdφ ‒ mean scalar PT sum of charged particles per unit η-φ 
– Mean PT ‒  scalar PT of charged particles averaged in an event 
– d2ΣET/dηdφ ‒ mean ET sum of charged and neutral particles per unit  η-φ 
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Corrections, Unfolding, Uncertainties  
• To allow  comparison of the results with theoretical predictions and 

other experimental studies, the UE distributions were corrected for 
selection efficiencies and detector resolution effects 

• A two step correction procedure was used 
– The track efficiency corrections were applied to the track based observables 
– The cluster energy was corrected to the momentum of the charged or neutral 

hadron 
– The remaining detector effects were unfolded to produce observables at particle 

level 
• Bayesian iterative unfolding method was used to correct for residual 

detector effects. The corresponding smearing matrix was calculated 
using MC samples 

• The following main uncertainties were taken in to account 
– Jet/Cluster energy scales and track reconstruction efficiencies 
– Material uncertainty estimated using MC with different detector geometry 
– Unfolding uncertainty (using different MC inputs) 
– Merged vertex effects were studied comparing MC with/without pile-up 
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Monte Carlo samples 
• Several MC samples produced with different generators and their 

tunes are used for comparison with data 
• The following generators are used: Pythia6, Pythia8, Herwig+Jimmy, 

Herwig++, Alpgen+Herwig+Jimmy 
• Jimmy is a MPI generator for Herwig 
• Alpgen generator provides leading-order multi-leg matrix element 

events, i.e. gives more complex hard process topologies 
• Tunes: 

– Pythia6 DW old Tevatron tune 
– Pythia6 AUET2B latest ATLAS Py6 tune using track jets, jet shapes 
– Pythia8 AU2 latest ATLAS Py8 tune (excellent UE with track jets description) 
– Herwig++ UE7-2 author tune with early LHC data 
– Herwig+Jimmy AUET2 latest ATLAS tune for standalone Herwig+Jimmy 
– Alpgen+Herwig+Jimmy AUET1 older ATLAS tune 
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ΣPT vs PT
lead for charged particles, transverse region 

• For inclusive jets (left) the total transverse ΣPT increases with PT
lead  indicating 

the contributions of multijet topologies 
• The exclusive dijet profile (right) decreases a bit as PT

lead increases, although 
the dependence is much weaker than the rise for inclusive jets 

• All MC qualitatively describe the trends but the decrease for dijets is 
noticeably smaller in all MC than in data 
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Nch vs PT
lead for charged particles, transverse region 

• The particle densities demonstrate the same trends for both the distributions 
but the decrease for dijets and its discrepancy with MC are even somewhat 
larger 

• Pythia8 AU2 (latest ATLAS tune) gives the worst description as well as at the 
previous slide 

• In general MC deviations for these plots are larger than in the previous slide 
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ΣPT vs PT
lead for charged particles TransMaxMin 

• In the inclusive jet events the trans-max activity (ΣPT and Nch at the next slide) 
grows with PT

lead, similarly to the total transverse region trend, but its trans-
min component is almost constant 

• Trans-min region is obviously being less affected by the hard part of the UE 
• PYTHIA6 AUET2B describes the data within the experimental uncertainties 
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Nch vs PT
lead for charged particles TransMaxMin 

• Nch density shows the same behavior as ΣPT at the previous slide 
• But PYTHIA6 AUET2B description is noticeably worse 
• The insensitivity of the trans-min region to changes in PT

lead indicates that UE 
activity can indeed be modelled as approaching a constant as a function of a 
hard process scale 
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ΣET vs PT
lead for charged and neutral particles |η| < 2.5 

• Mean sum of ET density is twice larger than for charged particles only for the 
central region |η| < 2.5 

• The trends are broadly similar to those for the track-based observables including 
the profile decrease with increasing PT

lead for exclusive dijet topology 
• MC gives also comparable quality of description as for the charged tracks 
• PYTHIA8 AU2 and Alpgen+HERWIG/JIMMY AUET1 predicts too high activity 
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ΣET vs PT
lead for charged and neutral particles |η| < 4.9 

• The full η acceptance plots show increased disagreement between the MC and 
data: the MC models undershoot the observed level of activity at low PT

lead 
values in both the inclusive and exclusive event selection 

• This discrepancy is notable as all MPI models have to date been tuned to 
observables measured solely for the central region 

• All models except HERWIG/JIMMY predict a faster rise of ΣET as a function 
of PT

lead than seen in the data 
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<mean PT> of charged particles vs PT
lead 

• The profile displays a very different behavior between the inclusive jet and 
exclusive dijet event selections: it rises strongly for inclusive jet case but is flat 
within uncertainties for dijet case. The high PT tails of UE particle production 
are effectively removed by the dijet selection 

• Both the profiles is well described by the MC models – within 10% of the data 
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<mean PT> of charged particles vs Nch 

• Mean PT of charged particles is increasing function of the number of charged 
particles for both the selections 

• PYTHIA6 DW overshoots and Alpgen+HERWIG/JIMMY AUET1 
undershoots both the profiles 

• HERWIG++ significantly overshoots the inclusive data but gives one of the 
best descriptions for dijets 
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Summary 
• The ATLAS preliminary results on the UE analysis using inclusive jet and 

exclusive dijet topologies up to PT = 800 GeV are presented 
• The results are shown for both the charged particles in the central region 

|η| < 2.5 and charged+neutral particles in the central region and in the full 
interval |η| < 4.9 

• Rising levels of transverse activity as a function of PT
lead are observed in 

the inclusive jet selection 
• Selection of the trans-min region as well as application of the exclusive 

dijet event selection removes this feature, producing instead constant or 
weakly decreasing  dependence on jet PT

lead  
• This can be interpreted as UE activity is nearly independent of the hard 

scattering scale 
• MC models in general provide qualitative description of the data behavior, 

but there are  some noticeable discrepancies, especially in the full η 
acceptance. 

• The data give more input for further MC generators tuning 
• Based on ATLAS public results: ATLAS-CONF-2012-164 
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