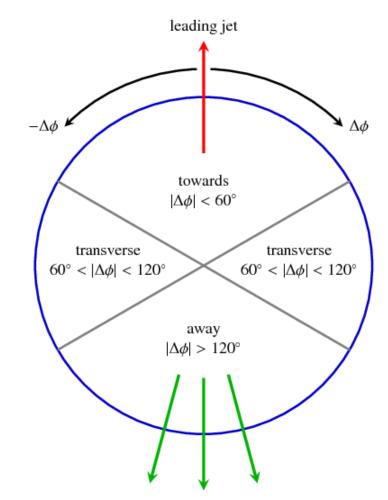


Studies of the underlying event with ATLAS

Andrey Minaenko On behalf of the ATLAS collaboration Institute for High Energy Physics, Protvino, Russia Deep Inelastic Scattering 2014, Warsaw, 29.04.14


Underlying Event

- Underlying Event (UE) everything except hard interaction objects with their ISR+FSR although the UE and the hard interaction can not be cleanly separated
- UE contains:
 - Products of soft hadronization of the colored proton remnants
 - Multiple parton interactions (MPI) with their ISR+FSR. MPI plays important role in soft particle production at the current LHC energy
- The low momentum QCD processes dominate the UE and they can not be reliably calculated with the perturbative QCD
- Phenomenological MC generators are used to model the UE and they contain a number of tuning parameters which should be fitted to the experimental data
- The correct modelling of the UE is important as it is a background to all hard QCD processes of interest

UE Analysis

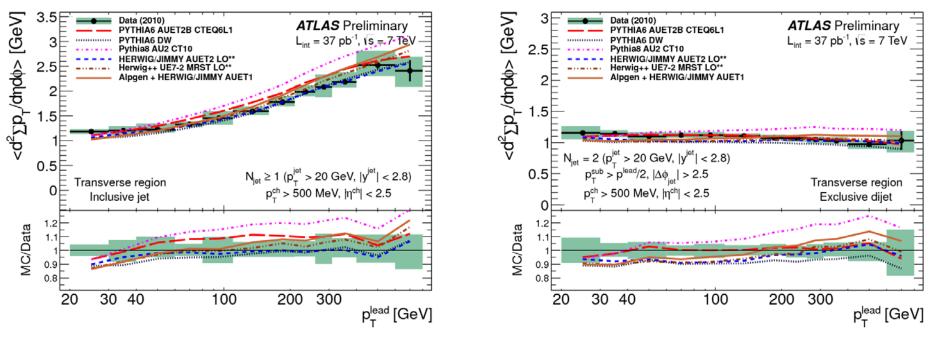
- Hard process used in this analysis is a jet production. The results are preliminary, the final analysis is in preparation
- The UE objects are charged and neutral particles reconstructed on the base of tracks and calorimeter clusters
- Beam transverse plane is subdivided in 4 regions shown at the figure. $\Delta \phi$ is the azimuthal angle between the leading P_T jet and a particle
- Towards and away regions are dominated by the hard process, transverse regions are sensitive to the UE
- The transverse regions are distinguished on event-by-event base as having more or less activity and referenced as trans-max and trans-min correspondingly

Event Selection

- 37 pb⁻¹ of low pile-up pp interactions at 7 TeV taken in 2010 have been used
- Two different event topologies:
 - Events with at least one jet
 - Events with an exclusive dijet
- Jet/event selection
 - Triggered anti-kt calorimeter jets with R=0.4
 - jet $P_T > 20$ GeV, |y| < 2.8
 - Primary vertex with at least 5 charged tracks
 - Pile-up veto: no additional vertices with more than 2 tracks
- Additionally for dijets
 - Balance of the leading and sub-leading jets: $P_T(sub) / P_T(lead) > 0.5$
 - Back-to-back topology: $\Delta \varphi$ (lead,sub) > 2.5
 - Events with additional jets are rejected
- The jets were fully corrected for detector effects

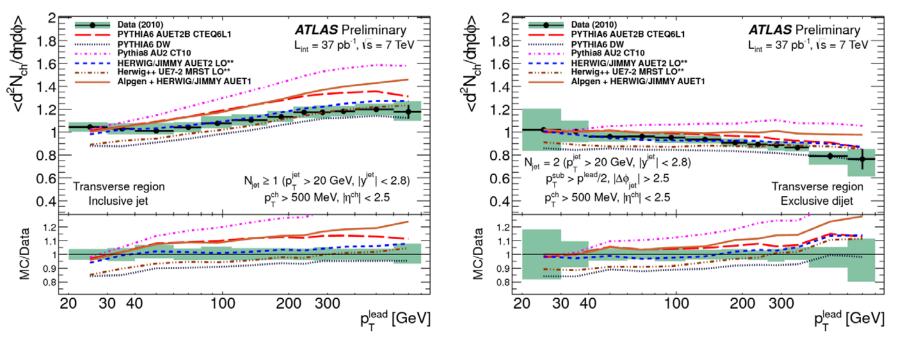
UE Objects Selection

- Reconstructed charged tracks and topological 3D clusters of calorimeter cells are used to characterize UE
- Charged tracks reconstructed in the Inner Detector (ID):
 - $P_{\rm T} > 0.5 \text{ GeV}, |\eta| < 2.5$
 - Quality cuts on the ID hits and reconstruction χ^2
 - Transverse and longitudinal impact parameters with respect to the primary vertex < 1.5 mm
- Clusters of calorimeter cells with $|\eta| < 2.5$ as for the tracks or in the full range $|\eta| < 4.9$
- The following observables as a function of P_T^{lead} (transverse momentum of the leading jet) are used to study UE:
 - $-~d^2N_{ch}/d\eta d\phi$ mean charge particle density per unit $\eta\text{-}\phi$
 - $d^2 \Sigma P_T / d\eta d\phi$ mean scalar P_T sum of charged particles per unit η - ϕ
 - Mean P_T scalar P_T of charged particles averaged in an event
 - $d^2 \Sigma E_T / d\eta d\phi$ mean E_T sum of charged and neutral particles per unit η - ϕ

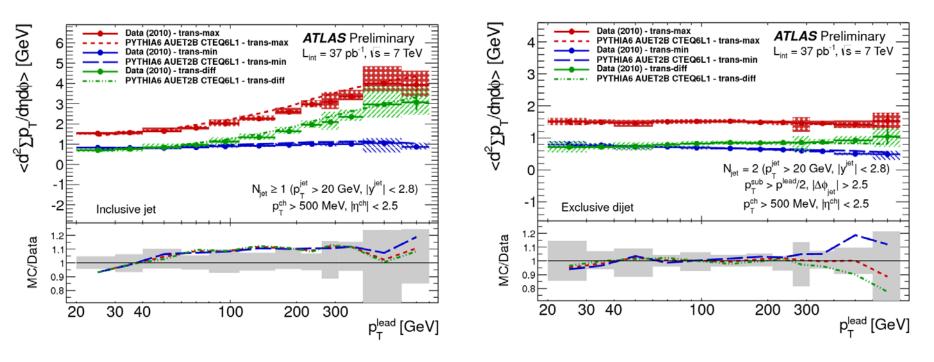

Corrections, Unfolding, Uncertainties

- To allow comparison of the results with theoretical predictions and other experimental studies, the UE distributions were corrected for selection efficiencies and detector resolution effects
- A two step correction procedure was used
 - The track efficiency corrections were applied to the track based observables
 - The cluster energy was corrected to the momentum of the charged or neutral hadron
 - The remaining detector effects were unfolded to produce observables at particle level
- Bayesian iterative unfolding method was used to correct for residual detector effects. The corresponding smearing matrix was calculated using MC samples
- The following main uncertainties were taken in to account
 - Jet/Cluster energy scales and track reconstruction efficiencies
 - Material uncertainty estimated using MC with different detector geometry
 - Unfolding uncertainty (using different MC inputs)
 - Merged vertex effects were studied comparing MC with/without pile-up

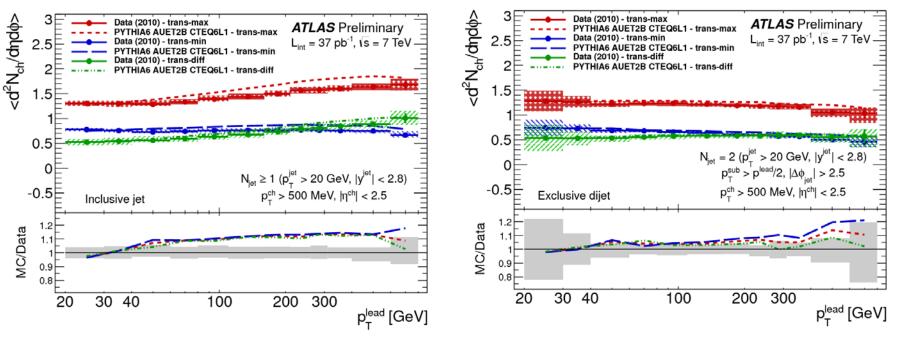
Monte Carlo samples


- Several MC samples produced with different generators and their tunes are used for comparison with data
- The following generators are used: Pythia6, Pythia8, Herwig+Jimmy, Herwig++, Alpgen+Herwig+Jimmy
- Jimmy is a MPI generator for Herwig
- Alpgen generator provides leading-order multi-leg matrix element events, i.e. gives more complex hard process topologies
- Tunes:
 - Pythia6 DW old Tevatron tune
 - Pythia6 AUET2B latest ATLAS Py6 tune using track jets, jet shapes
 - Pythia8 AU2 latest ATLAS Py8 tune (excellent UE with track jets description)
 - Herwig++ UE7-2 author tune with early LHC data
 - Herwig+Jimmy AUET2 latest ATLAS tune for standalone Herwig+Jimmy
 - Alpgen+Herwig+Jimmy AUET1 older ATLAS tune

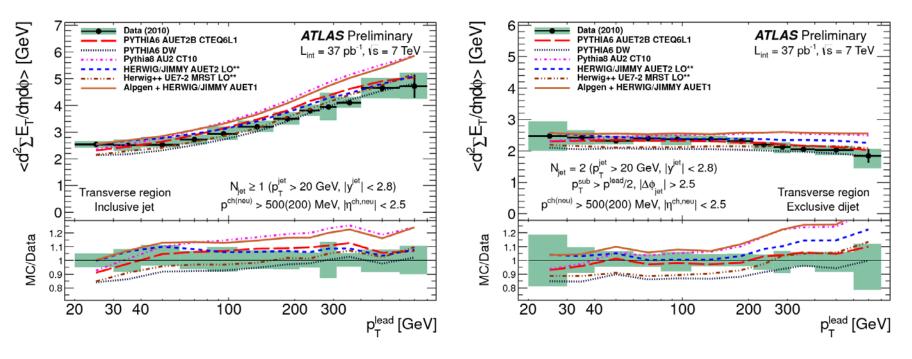
ΣP_T vs P_T^{lead} for charged particles, transverse region


- For inclusive jets (left) the total transverse ΣP_T increases with P_T^{lead} indicating the contributions of multijet topologies
- The exclusive dijet profile (right) decreases a bit as P_T^{lead} increases, although the dependence is much weaker than the rise for inclusive jets
- All MC qualitatively describe the trends but the decrease for dijets is noticeably smaller in all MC than in data

N_{ch} vs P_{T}^{lead} for charged particles, transverse region


- The particle densities demonstrate the same trends for both the distributions but the decrease for dijets and its discrepancy with MC are even somewhat larger
- Pythia8 AU2 (latest ATLAS tune) gives the worst description as well as at the previous slide
- In general MC deviations for these plots are larger than in the previous slide

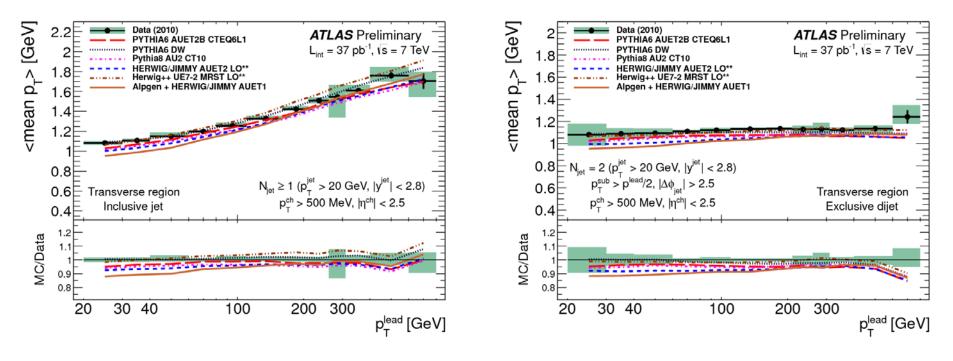
ΣP_T vs P_T^{lead} for charged particles TransMaxMin


- In the inclusive jet events the trans-max activity (ΣP_T and N_{ch} at the next slide) grows with P_T^{lead} , similarly to the total transverse region trend, but its transmin component is almost constant
- Trans-min region is obviously being less affected by the hard part of the UE
- **PYTHIA6 AUET2B describes the data within the experimental uncertainties**

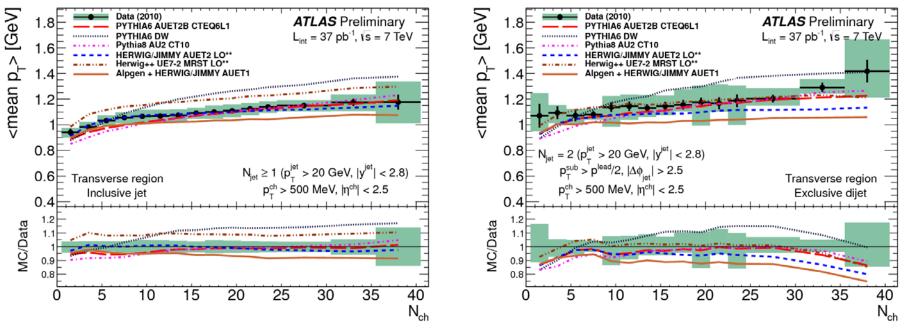
N_{ch} vs P_T^{lead} for charged particles TransMaxMin


- N_{ch} density shows the same behavior as ΣP_T at the previous slide
- But PYTHIA6 AUET2B description is noticeably worse
- The insensitivity of the trans-min region to changes in P_T^{lead} indicates that UE activity can indeed be modelled as approaching a constant as a function of a hard process scale

ΣE_T vs P_T^{lead} for charged and neutral particles $|\eta|<2.5$


- Mean sum of $E_{\rm T}$ density is twice larger than for charged particles only for the central region $|\eta|<2.5$
- The trends are broadly similar to those for the track-based observables including the profile decrease with increasing P_T^{lead} for exclusive dijet topology
- MC gives also comparable quality of description as for the charged tracks
- PYTHIA8 AU2 and Alpgen+HERWIG/JIMMY AUET1 predicts too high activity

$\Sigma E_{\rm T} \ vs \ P_{\rm T}^{\ lead}$ for charged and neutral particles $|\eta| < 4.9$


- The full η acceptance plots show increased disagreement between the MC and data: the MC models undershoot the observed level of activity at low P_T^{lead} values in both the inclusive and exclusive event selection
- This discrepancy is notable as all MPI models have to date been tuned to observables measured solely for the central region
- All models except HERWIG/JIMMY predict a faster rise of ΣE_T as a function of P_T^{lead} than seen in the data

<mean P_T> of charged particles vs P_T^{lead}

- The profile displays a very different behavior between the inclusive jet and exclusive dijet event selections: it rises strongly for inclusive jet case but is flat within uncertainties for dijet case. The high P_T tails of UE particle production are effectively removed by the dijet selection
- Both the profiles is well described by the MC models within 10% of the data

<mean P_T> of charged particles vs N_{ch}

- Mean P_T of charged particles is increasing function of the number of charged particles for both the selections
- PYTHIA6 DW overshoots and Alpgen+HERWIG/JIMMY AUET1 undershoots both the profiles
- HERWIG++ significantly overshoots the inclusive data but gives one of the best descriptions for dijets

Summary

- The ATLAS preliminary results on the UE analysis using inclusive jet and exclusive dijet topologies up to $P_T = 800$ GeV are presented
- The results are shown for both the charged particles in the central region $|\eta| < 2.5$ and charged+neutral particles in the central region and in the full interval $|\eta| < 4.9$
- Rising levels of transverse activity as a function of P_T^{lead} are observed in the inclusive jet selection
- Selection of the trans-min region as well as application of the exclusive dijet event selection removes this feature, producing instead constant or weakly decreasing dependence on jet P_T^{lead}
- This can be interpreted as UE activity is nearly independent of the hard scattering scale
- MC models in general provide qualitative description of the data behavior, but there are some noticeable discrepancies, especially in the full η acceptance.
- The data give more input for further MC generators tuning
- Based on ATLAS public results: ATLAS-CONF-2012-164