XXII International Workshop on Deep-Inelastic Scattering and Related Subjects

Warsaw, 28 April to 2 May 2014

Measurement of Inclusive ep Cross Sections at High Q² at $\sqrt{s} = 225$ and 252 GeV and of the Longitudinal Proton Structure Function F₁ at HERA

Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821]

S. Shushkevich, DESY

HERA Collider

- experiments: (H1, ZEUS) - e⁺ and e⁻
- polarization P_e

Low proton energy runs for direct F_L measurement

$$E_p = 460 \text{ GeV} \ 11.8 \text{ pb}^{-1}$$

 $E_p = 575 \text{ GeV} \ 5.4 \text{ pb}^{-1}$

Deep Inelastic Scattering (DIS) and Neutral Current (NC)

$$s = (k+P)^{2}$$

$$Q^{2} = -q^{2} = (k-k')^{2}$$

$$x = \frac{Q^{2}}{2(Pq)}$$

$$y = \frac{(Pq)}{(Pk)}$$

centre-of-mass energy squared

boson virtuality negative transferred 4-momentum squared

Bjorken x momentum fraction of proton carried by the struck quark

inelasticity

related as
$$Q^2 = sxy$$

S. Shushkevich

The Proton Structure and $\boldsymbol{F}_{_{\rm L}}$ Structure Function

At moderate Q²

In QPM:
$$F_2(x, Q^2) = \sum e_{q_i}^2 x(q_i + \bar{q}_i)$$
 Total quark content
 $F_L(x, Q^2) = F_2 - 2xF_1 = 0$ Callan-Gross relation

In QCD: add particle to carry angular momentum, gluon is needed

$$F_{L}(x,Q^{2}) = \frac{\alpha_{s}}{4\pi} x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3} F_{2} + 8 \sum_{q} e_{q}^{2} (1 - \frac{x}{z}) \cdot xg \right]$$

- F_{T} is a QCD effect which allows to make a critical test of perturbative QCD
- F_{L} is directly sensitive to the gluon density
- F_{L} is a structure function is measured at HERA at high y

S. Shushkevich

FL at High Q2 at HERA (H1 experiment)

_

Main Detector Components

$$y_e = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\Theta_e}{2}$$
 $Q_e^2 = \frac{E'_e^2 \sin^2 \frac{\Theta_e}{2}}{1 - y_e}$

Accept electron candidates down to 3 GeV \rightarrow harsh background conditions

LAr Liquid Argon Calorimeter

This measurement (large $\Theta \rightarrow \text{high } Q^2$) Electron identification Scattered electron energy $E'_e > 3 \text{ GeV}$ Background suppression with NN

CJC Central Jet Chamber

Electron candidate verification with track Electron candidate charge measurement Background suppression with NN

SpaCal Spaghetti Calorimeter

F.D. Aaron *et. al.* [H1 Collaboration], Eur. Phys. J. C71 (2011) 1579

γp Background Treatment at High y

Photoproduction background arise from

 $\pi^0 \rightarrow \gamma \gamma$ decays misidentification of charged hadrons semi-leptonic decays of heavy flavour hadrons

Apply neural network to select electrons for $E'_{e} < 10 \text{ GeV}$

shower shape variables ionisation energy loss dE/dx momentum matched track associated to the cluster

Make use of the electric charge of the electron candidate

- determine the charge from the track
- eliminate half of the background by requiring the **"right"** charge candidates
- estimate remaining half using "wrong" charge candidates
- take into account

charge asymmetry for data and MC efficiency of charge determination

Control Plots for the High y Region

NC Cross Section for $E_{n} = 460, 575, 920 \text{ GeV}$

Cross section measurements at (x, Q2) points at different s

Data from both LAr and SpaCal

S. Shushkevich

FL at High Q2 at HERA (H1 experiment)

F_L Structure Function Extraction: Accurate Treatment

- Use cross section measurements at $E_p = 460$, 575 and 920 GeV in LAr and SpaCal
- Simultaneously obtain F_2 and F_L in the fit properly taking correlated systematic uncertainties into account

$$\chi^{2}(F_{L,i}, F_{2,i}, b_{j}) = \sum_{i} \frac{\left[(F_{2,i} - f(y_{i})F_{L,i}) - \sum_{j} \Gamma_{i,j} b_{j} - \mu_{i} \right]^{2}}{\Delta_{i}^{2}} + \sum_{j} b_{j}^{2}$$
$$f(y) = y^{2}/(1 + (1 - y)^{2})$$
$$\Delta_{i} = \sqrt{\left(\Delta_{i,\text{stat}}^{2} + \Delta_{i,\text{syst}}^{2}\right)}$$

• Fit goodness: $\chi^2/ndf = 184/210$

(Neglecting correlations yields back to the naive linear fit)

F.D. Aaron *et. al.* [H1 Collaboration], Eur. Phys. J. C **71** (2011) 1579 [arXiv: 1012.4355]

The Longitudinal Structure Function $F_{I}(x, Q^2)$ at high Q^2

The Longitudinal Structure Function $F_{L}(Q^2)$

Average F_L measurement over x at each Q² to reduce statistical uncertainty H1 and ZEUS

Good agreement between the NNLO predictions and the measurement Additional constraints to PDF's at low Q^2

The Ratio R = $\sigma_{\rm L} / \sigma_{\rm T}$ Extraction

For $\gamma^* p R$ measures interaction with longitudinally polarized virtual photon Express F_L with F_2 and R from $R = F_L / (F_2 - F_L)$. Extraction is done with the similar minimization procedure obtaining asymmetric uncertainties.

Agrees well with previous measurement at low Q^2 and reasonable with ZEUS result

The Gluon Density Extraction

Reasonable agreement between direct gluon density (approximate) extraction and indirect measurement from scaling violation

Conclusions

• Measurement of the NC DIS cross section at two centre-of-mass energies of $\sqrt{s} = 225$ and 252 GeV

• Model independent extraction of the F_L and F_2 structure functions with the use of previous measurement at $\sqrt{s} = 319$ GeV

• Measurement of the ratio R of longitudinally and transversely polarized virtual photon cross sections

- Gluon density extraction based on NLO approximation
- Theoretical predictions demonstrates good agreement with the measurement
- The agreement between H1 and ZEUS results is within one standard deviation

Backup

The F_L Structure Function in QPM

γ*p interaction at small x

Interaction of a longitudinally polarized photon with a spin 1/2 quark

In QPM: can't conserve angular momentum and helicity at the same time

$$F_L = F_2 - 2xF_1 = 0$$
 (Callan-Gross relation)

S. Shushkevich

Analysis Strategy

High y analysis	Nominal analysis
0.38 < y < 0.90	0.076 < y < 0.38
$E'_{e} > 3 \text{ GeV} \rightarrow \text{hard background conditions}$	$E'_{e \min} \approx 18 \text{ GeV from kinematics}$
Claim for track pointing to the cluster Use neural network for scattered electron energy below 10 GeV to suppress the	Validate electron cluster with the CIP hits \rightarrow optimized vertex treatment \rightarrow very good ID efficiency simulation
photoproduction background : shower shapes, dE/dx, track-cluster momentum matching	Simulate and subtract the background (mainly QED Compton)
Make use of electric charge of the candidate require "right charge" for the em candidates estimate the remaining bkg with the "wrong charge" candidates take charge asymmetry into account	
In common Zvtx < 35 cm for good reconstruction quality E-Pz > 35 GeV to suppress initial state ration exclude insensitive LAr regions suppress QED Compton background	