Transverse momentum dependent (TMD) parton distribution functions (PDF) in Laguerre polynomial basis

Alexey A. Vladimirov

Department of Astronomy and Theoretical Physics
Lund University

29 April. 2014

Transverse momentum dependent (TMD) parton distribution functions (PDFs) appears in the hard processes which involves two hadrons.
In the regime $Q^{2} \gg k_{T}^{2} \sim b_{T}^{-2} \gg \Lambda^{2}$ there are TMD factorization theorems
[Collins,Soper,82; Collins,Soper,Sterman, 85]

$$
\begin{aligned}
& W^{\mu \nu}\left(Q, k_{T}\right) \simeq H^{\mu \nu}\left(\frac{Q^{2}}{\mu^{2}}, x_{1}, x_{2}\right) \\
& \quad \otimes \int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{-i\left(b_{T} k_{T}\right)} \underbrace{F^{u n s .}\left(x_{1}, b_{T} ; \mu, \delta^{+}\right) D^{u n s .}\left(x_{2}, b_{T} ; \mu, \delta^{-}\right)}_{\text {unsubtracted TMD PDFs }} \underbrace{S\left(b_{T}, \delta^{+}, \delta^{-}\right)}_{\text {soft factor }}
\end{aligned}
$$

- $\delta^{ \pm}$are regularization parameters for rapidity divergences
- Factorization of hard part id is controlled by parameter μ (RG equation):

$$
\mu^{2} \frac{d}{d \mu^{2}} \ln F\left(x, b_{T} ; \mu, \zeta\right)=\gamma_{F}\left(\alpha ; \frac{\zeta}{\mu}\right) \quad\left[=\frac{\alpha_{s}}{\pi} C_{F}\left(\frac{3}{2}-\ln \left(\frac{\zeta}{\mu^{2}}\right)\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]
$$

- Factorization of Glauber region is controlled by parameter ζ (CSS equation [Collins,Soper,Sterman,85]):

$$
\zeta \frac{d}{d \zeta} \ln F\left(x, b_{T} ; \mu, \zeta\right)=K\left(b_{T} ; \mu\right) \quad\left[=-\frac{\alpha_{s}}{\pi} C_{F} \ln \left(\frac{\mu^{2} b_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]
$$

- At $b_{T} \rightarrow 0\left(k_{T} \rightarrow \infty\right)$ is singular and does not match integrated PDFs

$$
\lim _{b_{T} \rightarrow 0} F\left(x, b_{T} ; \mu, \zeta\right) \nsim f(x, \mu)
$$

- The matching of integrated and TMD PDF requires OPE at small- b_{T} [Collins,Soper, 82]

$$
\begin{gathered}
\left(\text { assuming } b_{T} \sim Q^{-1}\right) \\
F_{f / P}\left(x, b_{T}, \mu, \zeta\right)=\sum_{j} \int_{x}^{1} \frac{d z}{z} \underbrace{C_{f / j}\left(\frac{x}{z}, b_{T} ; \zeta, \mu\right)}_{\text {coef. function }} \underbrace{f_{j / P}(z, \mu)}_{P D F}+\mathcal{O}\left(\left(\Lambda b_{T}\right)^{a}\right) .
\end{gathered}
$$

This expression is a result of "collinear" factorization between scales $\Lambda^{2} \ll k_{T}^{2}\left(b_{T}^{-2}\right)$.

For the practical application one needs $b_{T} \gg Q^{-1}$
$F_{f / H}\left(x, b_{T} ; \mu, \zeta\right)=\overbrace{\underbrace{\sum_{j}\left(C_{f / j} * f_{j / H}\right)\left[x, b_{T} ; \mu_{b}\right]}_{\text {perturbative input }}}^{\text {OPE at } \overbrace{R} \overbrace{R} \rightarrow 0} \overbrace{R\left(b_{T} ; \mu, \zeta ; \mu_{b}\right)}^{\text {evolution }} \overbrace{\exp \left(g_{1}\left(x, b_{T}\right)+g_{2}\left(b_{T}\right) \ln \left(\frac{\zeta}{\zeta_{0}}\right)\right)}^{\text {nonperturbative factor }}$

Nonperturbative factor

- Minimal (Gaussian) anzatz $g_{1} \propto g_{2} \propto-a_{1} b^{2}$
- Non-minimal anzatz $g_{2} \propto-a_{1} b^{2}+a_{2} b^{4}+\ldots \quad$ or $\quad g_{2} \propto b^{2} \ln \left(1+c_{1} b^{2}\right)$ e.g. [Aidala,et al 2014]

Minimal anzatz should be modified at larger b_{T}. Can we obtain any perturbative modification to it?

The nonperturbative factor behaves as

$$
\begin{aligned}
& \stackrel{\sim 1}{\sim} \stackrel{\text { at } b_{T} \rightarrow 0}{ }
\end{aligned}
$$

for matching with coll.fac.

$$
\sim e^{-b_{T}^{2}}
$$

intermediate region,
$\sim ?$ at $b_{T} \rightarrow \infty$, truly non-pert. regime

For the practical application one needs $b_{T} \gg Q^{-1}$

$$
F_{f / H}\left(x, b_{T} ; \mu, \zeta\right)=\overbrace{\underbrace{\sum_{j}\left(C_{f / j} * f_{j / H}\right)\left[x, b_{T} ; \mu_{b}\right]}_{\text {perturbative input }}}^{\text {OPE at } \overbrace{R\left(b_{T} ; \mu, \zeta ; \mu_{b}\right)}^{b_{T} \rightarrow 0} \overbrace{\exp \left(g_{1}\left(x, b_{T}\right)+g_{2}\left(b_{T}\right) \ln \left(\frac{\zeta}{\zeta_{0}}\right)\right)}^{\text {evolution }} \overbrace{\operatorname{nonperturbative~factor~}}^{\text {non }})}
$$

Gaussian Fit

For the practical application one needs $b_{T} \gg Q^{-1}$

$$
F_{f / H}\left(x, b_{T} ; \mu, \zeta\right)=\overbrace{\underbrace{\sum_{j}\left(C_{f / j} * f_{j / H}\right)\left[x, b_{T} ; \mu_{b}\right]}_{\text {perturbative input }} \overbrace{R\left(b_{T} ; \mu, \zeta ; \mu_{b}\right)}^{\text {OPE at } b_{T} \rightarrow 0} \overbrace{\exp \left(g_{1}\left(x, b_{T}\right)+g_{2}\left(b_{T}\right) \ln \left(\frac{\zeta}{\zeta_{0}}\right)\right)}^{\text {evolution }} \overbrace{R}^{\text {nonperturbative factor }})}^{\text {O. }}
$$

[Echavarria, et al, 14]

Phenomenologically motivated OPE

- In principle, perturbative QCD should work in some non-zero range of $0<b_{T}^{2} \ll \Lambda_{Q C D}^{-2}$. In this range one can perform OPE with reasonable convergence of perturbative corrections to coefficient functions

- The matrix element of O_{0} is PDF. The matrix elements of O_{n} are unknown.
- At intermediate b_{T} there is no reason to expect any suppression of higher terms.

Standard approach

$$
O\left(x, b_{T}\right)=\underbrace{G_{0}\left(x, b_{T}\right) \otimes O_{0}(x)}_{\text {leading at } b_{T} \rightarrow 0} \times \underbrace{(1+\ldots \ldots)}_{\text {nonperturbative factor }}
$$

- The Taylor-like OPE is not saturated by the first terms.
- Possible solution is to use another basis.

Demands to the operator basis at intermediate b_{T}

- Transverse locality
- Orthogonality
- Infinite support in b_{T}

$$
\rightarrow
$$

$$
\rightarrow
$$

\rightarrow
polynomial in ∂_{T} orthogonal polynomial in ∂_{T} Hermite or Laguerre polynomials

- Symmetry constrains (??)
- Both polynomials has Gaussian generation function, \Rightarrow it guaranties the leading Gaussian behavior of OPE
- Both basis includes unity, \Rightarrow the leading term is integrated PDF.
- Hermite are suitable for the polarized TMDs while Laguerre are suitable for unpolarized TMDs.

Demands to the operator basis at intermediate b_{T}

- Transverse locality
- Orthogonality
- Infinite support in $b_{T} \quad \rightarrow$
- Symmetry constrains (??)
\rightarrow
\rightarrow
polynomial in ∂_{T}
orthogonal polynomial in ∂_{T}
Hermite or Laguerre polynomials
- Both polynomials has Gaussian generation function, \Rightarrow it guaranties the leading Gaussian behavior of OPE
- Both basis includes unity, \Rightarrow the leading term is integrated PDF.
- Hermite are suitable for the polarized TMDs while Laguerre are suitable for unpolarized TMDs.

Phenomenologically motivated OPE

Operator definition of TMD PDF
we use [Echevarria,Idilbi,Scimemi,12-13] (EIS) definition
free of divergences
TMD PDF

$$
F\left(x, b_{T} ; \mu, \zeta\right)=\overbrace{\underbrace{}_{\text {UV renorm. }} \underbrace{Z(\mu)}_{\begin{array}{c}
\text { cancel } \\
\text { rapitity } \\
\text { divergences }
\end{array}} \underbrace{\left(S\left(b_{T}, \zeta \delta, \delta\right)\right)^{-\frac{1}{2}}} F^{\text {uns. }}\left(x, b_{T} ; \mu, \delta\right)}
$$

- δ-regularization is defined as $\left(k^{ \pm} \mp i 0\right)^{-1} \rightarrow\left(k^{ \pm} \mp i \delta\right)^{-1}$

$$
\begin{aligned}
& F^{\text {uns. }}\left(x, b_{T}, \delta\right)=\left.\int \frac{d \xi^{-}}{(2 \pi)} e^{-i x \xi^{-} p_{+}}\langle p| \bar{q}(\xi) W\left(\xi, 0 ; \mathcal{C}_{\delta}\right) q(0)|p\rangle\right|_{\xi^{+}=0, \xi_{\perp}=b_{T}} \\
& S\left(b_{T}, \delta^{+}, \delta^{-}\right)=\langle 0| \operatorname{tr}\left[W\left(b_{T}, 0 ; \mathcal{C}_{\delta^{+}}\right) W\left(0, b_{T} ; \mathcal{C}_{\delta^{-}}\right)\right]|0\rangle
\end{aligned}
$$

Laguarre based OPE at leading order (free theory)

$$
O\left(x, b_{T}\right)=\underbrace{\left.\mathbb{O}_{n}\left(x, B_{T}\right) \propto \int \frac{b_{T}^{2}}{4 B_{T}^{2}}\right)^{\frac{n}{2}} e^{-\frac{b_{T}^{2}}{4 B_{T}^{2}}}}_{\sum_{n=0,2, .}^{\infty}} \overbrace{\text { independent on } B_{T}}^{\text {prototype of nonper. factor }}\left(1+\mathcal{O}\left(\alpha_{s}^{2}\right)\right) \mathbb{O}_{n}\left(x, B_{T}\right)
$$

- At $B_{T} \rightarrow \infty$ turns to the standard OPE
- Every individual term is dependent on B_{T}
- The leading order results to the Gaussian factor, we may assume that contribution of $n>0$ terms is small at small and intermediate b_{T}.

It can be seen as an extraction (by hands) of desired distribution from the higher order term, one can extract any factor(smooth) in such a way.

The important point is quantum corrections

No twist-expansion, - no hierarchy!
The operators in Laguerre basis strongly mix in loops. The mix includes operators of kind

- The admixture of four-field operators appears only at two-loop level, (6-field at three-loop, etc.)
- There is no admixture of $\partial^{2}\left(\partial_{T}^{2}\right)^{n-1}$ operator in $\left(\partial_{T}^{2}\right)^{n}$ (but not the opposite)
- The correction to the Laguerre operators mix in triangular way, i.e L_{n} influence on L_{k} only if $n<k$ (due to orthogonality!)

At one loop the actual calculation is reduced to

$$
C_{n}^{1-\text { loop }}\left(x, b_{T}, \mu\right)=\left.\left(\lim _{b_{T} \rightarrow 0} \lim _{\epsilon \rightarrow 0}-\lim _{\epsilon \rightarrow 0} \lim _{b_{T} \rightarrow 0}\right) \mathcal{G}^{1-\operatorname{loop}}\left(x, b_{T}, \mu\right)\right|_{L_{n}}
$$

\mathcal{G} is a 2 -point matrix element of O.

No twist-expansion, - no hierarchy!
The operators in Laguerre basis strongly mix in loops. The mix includes operators of kind

- The admixture of four-field operators appears only at two-loop level, (6-field at three-loop, etc.)
- There is no admixture of $\partial^{2}\left(\partial_{T}^{2}\right)^{n-1}$ operator in $\left(\partial_{T}^{2}\right)^{n}$ (but not the opposite)
- The correction to the Laguerre operators mix in triangular way, i.e L_{n} influence on L_{k} only if $n<k$ (due to orthogonality!)

We have calculated next order correction to coefficient function of operator \mathbb{O}_{n} for q / q and q / g evolution kernels, expressions etc. see [1402.3182]

The only practically interesting case is L_{0}

Modified expression for TMD PDF

$$
\begin{gathered}
F_{q / H}\left(x, b_{T} ; \mu, \zeta\right)=\sum_{j} \int_{x}^{1} \frac{d z}{z} \overbrace{\mathbb{C}_{q / j}\left(\frac{x}{z}, b_{T} ; \mu, \zeta\right)}^{\text {modified coef.functions }} \overbrace{f_{j / H}(x, \mu)}^{\text {int. PDF }}+\overbrace{\mathcal{O}_{1}}^{\text {small? }}, \\
\mathbb{C}_{q / q}\left(x, b_{T}, \mu, \zeta\right)=e^{-\frac{b_{T}^{2}}{4 B_{T}^{2}}} \delta(1-x)+ \\
2 a_{s} C_{F} e^{-\frac{x^{2} b_{T}^{2}}{4 B_{T}^{2}}}\left[-L_{T} P_{q q}(x)+\delta(\bar{x})\left(\frac{3}{2} L_{T}-\frac{1}{2} L_{T}^{2}-\frac{\pi^{2}}{12}+L_{T} \ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
+\bar{x} x^{2} \frac{b_{T}^{2}}{B_{T}^{2}} L_{T}\left(\frac{x^{2}}{8} \frac{b_{T}^{2}}{\left.\left.B_{T}^{2}-1\right)-\frac{x^{4} \bar{x}}{4}\left(\frac{b_{T}^{2}}{B_{T}^{2}}\right)^{2}+\frac{3 x^{2} \bar{x}}{2} \frac{b_{T}^{2}}{B_{T}^{2}}\right]+\mathcal{O}\left(a_{s}^{2}\right),}\right. \\
\mathbb{C}_{q / g}\left(x, b_{T}, \mu, \zeta\right)= \\
2 a_{s} e^{-\frac{x^{2} b_{T}^{2}}{4 B_{T}^{2}}}\left(-P_{q g}(x) L_{T}+2 x \bar{x}\right)+\mathcal{O}\left(a_{s}^{2}\right) . \\
L_{T}=\ln \left(\frac{\mu^{2} b_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)
\end{gathered}
$$

Renormalization group kernel and CSS kernel are the same as in the standard approach.
The result can not be presented as a factor, it is a generalized function!

Tale(s) on three scales

$$
d \sigma \otimes \underbrace{H\left(\frac{Q}{\mu}\right) \otimes \overbrace{\underbrace{\kappa \text {-independent }}_{\left(C\left(b \kappa_{1}, \frac{\zeta}{\mu}, \frac{\mu}{\kappa_{1}}\right) \otimes f\left(\kappa_{1}\right)\right)} \otimes \overbrace{\left(C\left(b \kappa_{2}, \frac{\zeta}{\mu}, \frac{\mu}{\kappa_{2}}\right) \otimes f\left(\kappa_{2}\right)\right)}^{\kappa \text {-independent }}}^{\overbrace{(C e n t}}}_{\mu \text {-independent }}
$$

One cannot choose scales such that all logarithms are small.
Traditional approach e.g [Aybat,Rogers,11] is to evolve $(\mu, \zeta) \rightarrow\left(\mu_{b}, \mu_{b}\right)$ and set $\kappa=\mu_{b}$.

$$
\mu_{b}: \quad\left\{\begin{array}{cc}
\left(\mu_{b} b_{T}\right) \rightarrow \text { const } & b_{T} \rightarrow 0 \\
\alpha\left(\mu_{b}\right)<1 & b_{T} \rightarrow \infty
\end{array} \quad \mu_{b}^{2}=4 e^{-2 \gamma_{E}}\left(\frac{1}{b_{T}^{2}}+\frac{1}{b_{\max }^{2}}\right)\right.
$$

$$
\begin{aligned}
& F_{q / H}\left(x, b_{T} ; \mu, \zeta\right)=\sum_{j} \int_{x}^{1} \frac{d z}{z} \mathbb{C}_{q / j}\left(\frac{x}{z}, b_{T} ; \mu_{b}, \mu_{b}^{2}\right) f_{j / H}\left(x, \mu_{b}\right) \times \\
& \exp \left[-2 a_{s}\left(\mu_{b}\right) C_{F} \ln \left(\frac{\zeta}{\mu_{b}^{2}}\right) L_{T}^{b}+2 C_{F} \int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} a_{s}\left(\mu^{\prime}\right)\left(\frac{3}{2}-\ln \left(\frac{\zeta}{\mu^{\prime 2}}\right)\right)\right] \\
& 0.02
\end{aligned}
$$

- Effect of quantum correction is higher at smaller x
- Higher order corrections result to b_{T}^{n} terms, which flatten out the initial Gaussian distribution.

Conclusion

Phenomenological OPE

- The introduction of "nonperturbative" information can be done in "perturbative" way via phenomenological OPE.
- Chousing appropriate basis one can obtain the nonperturbative factor of a desired form at leading order
- The perturbative corrections would slightly violate this form, resulting to the better matching between perturbative and nonperturbative regions

TMD PDF in Laguerre basis

- The general Gaussian form of TMD PDF implies the Laguerre operator basis
- The LO and NLO matching coefficients are calculated
- The corrections flattens the tail of Gaussian distribution
- The correction is less significant at $x \sim 1$ and more significant at small x.
- For the check of the method the accurate phenomenological study is needed.

