ATLAS Upgrades Towards the High Luminosity LHC: Extending the Discovery Potential Diane Cinca, University of Glasgow on behalf of the ATLAS collaboration DIS 2014 - Warsaw ### Performance of ATLAS in Run I - * Before data-taking, expected in-time pileup (PU) was 23 (25ns BS (bunch spacing), design luminosity). - * In 2012, average PU was regularly over 30 (50ns BS) - * Inner Detector: - ✓ High reconstruction efficiency - √ Vertex reconstruction performing well - * e/y performances: - Electron energy response and photon conversion reconstruction show excellent stability versus increasing pileup. #### ATLAS p-p run: April-December 2012 | Inner Tracker | | Calori | meters | Mu | Muon Spectrometer | | | Magnets | | | |---------------|------|--------|--------|------|-------------------|------|------|---------|----------|--------| | Pixel | SCT | TRT | LAr | Tile | MDT | RPC | CSC | TGC | Solenoid | Toroid | | 99.9 | 99.1 | 99.8 | 99.1 | 99.6 | 99.6 | 99.8 | 100. | 99.6 | 99.8 | 99.5 | #### All good for physics: 95.5% Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at \sqrt{s} =8 TeV between April 4th and December 6th (in %) – corresponding to 21.3 fb⁻¹ of recorded data. #### * Jet/E_TMiss performances: - ✓ E_T^{Miss} reconstruction is performing well - Stable resolution performances #### * Particle Identification: Identification efficiency is robust against pileup #### * DAQ and trigger: - Developed algorithms are robust against pileup - 21.7 fb⁻¹ recorded by ATLAS (94% DAQ efficiency) Diane Cinca # Motivation for an upgrade "Europe's top priority should be exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030." #### * Higgs boson precision measurements: - * Expected uncertainties on signal strength reduced by a factor of 2-3 with HL-LHC. - * Ratio of partial widths to measure ratios of couplings and probe New Physics. - * SM Higgs rare decays and processes, e.g. $H \rightarrow \mu\mu$, and ttH can be measured. - * Higgs self-coupling in SM accessible only at HL-LHC. #### * Probing New Physics: - * SUSY and other New Physics beyond SM. - * Enhancements in vector boson scattering amplitudes. - * Rare processes, e.g. FCNC decays from top accessible to 10⁻⁵. Diane Cinca # The challenge - * Higher instantaneous luminosity means that more protons will collide in one event: - * Pileup could reach up to 200 collisions per event. - * Increased occupancy and saturation of available data transmission bandwidth. - * Triggers rates cannot increase in line with luminosity so greater selectivity required to preserve efficiency. - * Higher integrated luminosity means higher total particle flux through detector: - * Increased radiation damage (especially in inner layers). - * Increased activation of the materials. - * The goal is to achieve the same (or better) performances (resolution, ...) at HL-LHC as at LHC, despite the large increase of event rate. 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2035? LS2 LS3 Now! Run 1 ~25 fb.1 Go to design energy, nominal luminosity - Phase 0 √s=13~14 TeV, L~1x1034cm-2s-1, bunch spacing 25ns Run 2 ~75-100 fb 1 Injector + LHC Phase I upgrade to ultimate design luminosity √s=14 TeV, L~2x1034cm-2s-1, bunch spacing 25ns Run 3 ~350 fb1 HL-LHC Phase II upgrade: Interaction Region, crab cavities? √s=14 TeV, L~5x10³⁴cm⁻²s⁻¹, luminosity levelling ~3000 fb⁻¹ # Ongoing: Phase 0 * Long Shutdown 1: duration 18 months #### * LHC upgrades: - * Run 2 (2015-2018): $\sqrt{s}=13-14$ TeV, L-1.10³⁴ cm⁻²s⁻¹, $<\mu>-27$, @ 25ns (start at 50ns), -75-100 fb⁻¹ expected - * Consolidation of superconducting circuits - * Replace/repair superconducting splices for 13 TeV energy and nominal peak luminosity #### * ATLAS upgrades: - * Insertion of an additional 4th pixel layer: Insertable B-Layer (IBL), Diamond Beam Monitor (DBM) - * Completion of Muon Spectrometer Chambers added to improve acceptance for 1.0 <|η|< 1.3 (Endcap Extension (EE) Muon Chambers) - * New Pixel Service Quarter Panels (nSQP) - * Usage of outer most layer of Tile Calorimeter for L1 Muon trigger #### * ATLAS consolidation: - * New Al/Be beam pipe - * New evaporative Inner Detector cooling plant - * New Low Voltage Power Supplies for the calorimeters - * Power network, magnet cryogenics, services # Phase 0: Insertable B Layer (IBL) #### * Physics motivations: - * From L = 2.10^{34} cm⁻²s⁻¹ b-tagging efficiency will start to degrade. - * Robust tracking in case of failures in the current pixel system. - * Improves impact parameter resolution, vertexing, τ -reconstruction at high pileup. - * Replace beam pipe. #### * Insertable B-Layer (IBL) #### Additional pixel layer as innermost tracking layer - * Important ingredient for low mass, rad-hard construction: 2 cm x 2 cm FE-I₄ Pixel Chip, 130 nm CMOS process. - * Sensors: planar pixel sensors and 3D. - * Installation of IBL in the pixel detector, in the pit: May 2014. - * Will stay until Phase-II (-7 years). - Reduced material budget: 0.015 X₀ - Coverage: z = 60cm, |η| < 2.5 - Sensors @33mm (now@50.5mm)=> smaller beam pipe (29 -> 25mm) - 14 staves with phi overlap - No eta overlap due to clearance => minimize modules edge ### Phase 0: Muon chambers - * Endcap Extension (EE) Muon Chambers - * Installation of the chambers to address low efficiency in the region 1.0< $|\eta|$ <1.3 * Need to bring Muon Small Wheel (9m diameter) on the surface out of the way of the IBL * New shielding at 7m : gap between forward calorimeter and shielding disk # ATLAS upgrades - Phase 1 - * LHC (after LS2: duration 18 months, 2018-2019) - * Run 3 (2020-2022): $\sqrt{s}=14$ TeV, L-2-3.10³⁴ cm⁻²s⁻¹, $<\mu>$ -50-80, @ 25 ns, -300 fb⁻¹ expected - * Consolidation of injection chain, collimators #### * ATLAS upgrades: - * Fast Track Trigger at "Level 1.5" - * Higher granularity and precision in L1 Trigger for calorimeter - * New Small Wheels for the forward muon spectrometer - * Topological (multi-object) L1 Trigger processors - * Central Trigger Processor (CTP) upgrades - * ATLAS Forward Physics (AFP), proton det. at ±210 m #### Phase-I Upgrades should be forward compatible with Phase-II In 2013, 4 TDRs for Phase-I construction projects were prepared within ATLAS, approved by CB and endorsed at the LHCC meeting (December 2013) # Fast track trigger - * Motivation: Track information at the start of Level 2. - * Dedicated, hardware-based track finder (based on CDF Silicon Vertex Triggering development) - * Runs after the first level trigger on duplicated Si-detector read-out links Provides tracking input for the level-2 trigger for the full event - * not feasible with software tracking at L2 - * Finds and fits tracks (- 25 µs) in the ID silicon layers at an "offline precision" - * Processing performed in two steps: # Motivation: maintain high efficiency for Level-1 triggering on low P_T objects (electrons-photons) - * The current Level 1 EM calorimeter trigger uses: - * E_T thresholds based on $\eta \times \phi$ =0.1 x 0.1 trigger towers - * No fine-grained EM sampling info available at L1 trigger to compute shower shapes - * LAr calorimeter Upgrade : changes on the front-end electronics to exploit finer granularity: - * Computation of lateral and longitudinal shower shapes - * Improve granularity of trigger for better discrimination between electrons and jets - * Requires new trigger electronics located in replacement trigger daughter boards for the Front End boards. - * New trigger readout architecture for LAr, forward and backward compatibility: - * On-detector : New layer sum and digitizer boards (LTDB) - * Off-detector: Digital Processing System (DPS) and Feature Extractor in L1Calo. - * Better shower-shape discrimination: - * lower EM threshold by ~ 7 GeV at the same rate - * In addition significantly improved resolution - * lower EM threshold by another few GeV at same rate # New Muon Small Wheels - * Consequences of luminosity rising beyond design values for forward muon wheels: - * Degradation of the tracking performance (efficiency / resolution) - * Li muon trigger bandwidth exceeded unless thresholds are raised - * Replace Muon Small Wheels with New Muon Small Wheels: - * Improved tracking and trigger capabilities - * Position resolution < 100 μm - * IP-pointing segment with σ_{θ} 1 mrad - * Meets Phase-II requirements: - * compatible with $<\mu>=200$, up to L-7.10³⁴ cm⁻²s⁻¹ - * Technology: MicroMegas and strip Thin Gap Chambers (sTGC) # Goals for HL-LHC #### **Physics** | Study EWSB Mechanism | precision meas's of Higgs couplings (5-30%), Higgs self-coupling | | | |-------------------------------------|------------------------------------------------------------------|--|--| | Probe for signatures of New Physics | SUSY, Extra Dimensions, | | | | Measure rare decay modes | Higgs, B, top, | | | #### **Detector Requirements** | Example Physics/Detector Motivation | Requirement | | | |------------------------------------------|-------------------------------------------------|--|--| | complex SUSY cascades | Trigger & reconstruct low p _⊤ e/µ | | | | H → π | Trigger on t's | | | | High-mass gauge bosons | Good lepton e/µ momentum resolution at high p⊤ | | | | Complex SUSY cascades | Identify Heavy Flavors | | | | Resonances in top pairs, W, Z, H | Reconstruct leptons & b's in boosted topologies | | | | VBF, Missing ET | Preserve acceptance in forward region | | | | Efficient tracking with small fake rates | Radiation Tolerance and Granularity | | | | Impacts Front End electronics | Compatibility with new trigger system | | | # Goals for HL-LHC #### **Physics** | Study EWSB Mechanism | | precision meas's of Higgs couplings (5-30%), Higgs self-coupling | | | |----------------------|-------------------------------------|------------------------------------------------------------------|--|--| | | Probe for signatures of New Physics | SUSY, Extra Dimensions, | | | | | Measure rare decay modes | Higgs, B, top, | | | #### **Detector Requirements** | Example Physics/Detector Motivation | Requirement | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--| | complex SUSY cascades | Trigger & reconstruct low p _⊤ e/µ | | | | $H \rightarrow TT$ | Trigger on т's | | | | High-mass Improved trigger inputs and alg | orithms e/µ momentum resolution at high p⊤ | | | | Complex and increased detector coverage | | | | | Recommendate of a standard of the | Reconstruc leptons & b's in boosted topologies | | | | New detector technologies required | Preserve acceptance in forward region | | | | Efficient tracking with small fake rates | Radiation Tolerance and Granularity | | | | Impacts Front End electronics | Compatibility with new trigger system | | | # ATLAS upgrades - HL-LHC #### * LHC (after LS3: duration - 30 months, 2023-2025) - * prepare for luminosity levelling - * peak luminosity 5.10^{34} cm⁻²s⁻¹ (levelled), considered up to 7.10^{34} cm⁻²s⁻¹ ($<\mu>=200$) for safety, -3000 fb⁻¹ @ 14 TeV #### * ATLAS upgrades: - * All new Tracking Detector - * Level-1 track trigger - * Calorimeter electronics upgrades - * Upgrade muon trigger system - * Possible changes to the forward calorimeters Current Inner Detector - designed to operate for 10 years at L=1.10 cm s with < \$\mu >=27\$, @25ns, L1=100 kHz - * Limiting factors at HL-LHC (L=5.10³⁴ cm⁻² s⁻¹,<µ>=140, 3000 fb⁻¹): - * Bandwidth saturation (Pixels, SCT) - * Increased occupancies (TRT, SCT) up to 100% in TRT - * Radiation damage (Pixels, SCT designed for 400 (700) fb⁻¹) - * pixels system extends out to larger radii - * more pixel hits in forward direction to improve tracking - * smaller pixels and short inner strips to increase granularity - * outer active radius slightly larger to improve momentum resolution - * Remove Transition Radiation Tracker (TRT) as occupancy is too high during HL-LHC - * Install new all-silicon tracker with pixels and strips - * Granularity increases by a factor 4 # L1 track trigger #### * Adding tracking information at Level-1 (L1) - * Move part of the "offline" High Level Trigger (HLT) reconstruction into the early stage of trigger - * Goal: keep thresholds on pT of triggering leptons and L1 trigger rates low #### * Triggering sequence - * Lo trigger (Calo/Muon) reduces rate within -6 μs to ≥ 500 kHz and defines RoIs - * Li track trigger extracts tracking info inside RoIs from detector FEs #### * Challenge - * Finish processing within the latency constraints - * Requires changes to detector FE electronics feeding trigger system Toroid magnets Solenoid magnets SCT tracker Pixel detector TRT tracker # Summary The ATLAS collaboration developed a detailed program to reflect the changes in the LHC conditions towards the HL-LHC, characterised by high track multiplicity and extreme fluences. #### We aim at: - * maintaining/improving the present detector performance. - * ensuring optimal physics acceptance as the instantaneous luminosity increases. The major ATLAS upgrades include: #### Phase o New Inner Pixel Layer Detector consolidation #### Phase I Improve L1 trigger capabilities to cope with higher rates Improve Muon system with nMSW #### Phase 2 Prepare for 200 pileup events Replace Inner Tracker New Lo/L1 trigger scheme Upgrade muon/calorimeter electronics Now! An exciting new chapter is beginning! # Backup # ATLAS Forward Physics (AFP) - * Tag and measure scattered protons at +/- 210m - * Link to system triggered in central ATLAS - * Radiation-hard edgeless 3D silicon developed in IBL context - * 10ps timing detector for association with high pT primary vertex - * Probe hard diffractive physics and central exclusive production of heavy systems/particles # New LHC schedule beyond LS1 Starting in 2018 (July) 18 months + 3 months BC (BC: Beam Commissioning) LS₃ Starting in 2023 30 months + 3 BC Injectors: in 2024 13 months + 3 BC # Higgs rare process/Decay projections Signals only accessible with 3000 fb⁻¹ with errors limited by statistics #### ttH production with $H \rightarrow \gamma \gamma$ - Direct access to Higgs-top coupling. - Today's sensitivity (30 fb⁻¹): 6xSM crosssection - With 3000 fb⁻¹: expect 200 signal events > 5σ - Higgs-top coupling can be measured to about 10% #### $H \rightarrow \mu\mu$ - Gives direct access to Higgs couplings to fermions of the second generation. - Today: 8xSM cross section - With 3000 fb⁻¹ expect 17000 signal events and 7 σ significance - Higgs-muon coupling can be measured to about 10% # Vector Boson Scattering - Not yet observed test of Higgs role in cancelling VBS divergence in SM can be measured to 30% (10%) with 300 (3000) fb-1 - If new physics exists: sensitivity to anomalous triple or quartic couplings increases by factor of 2 between 300 and 3000 fb-1 #### LEVEL-1 TOPOLOGICAL TRIGGER Example: exploit characteristic location of pile-up jets wrt E_T^{miss} vector - In Phase-I, $ZH \rightarrow vvbb$ with 160 GeV E_T^{miss} trigger (XE40) would exceed total L1 rate due to pile-up jets faking missing energy - Increasing threshold rapidly costs signal efficiency - Combination with inclusive jet trigger brings rate down to ~10 kHz (still too high) - **L1Topo**: cut on azimuthal distance between jet and *E*Tmiss ($\Delta \varphi > 1$) reduces rate by ~45% with negligible loss in signal efficiency - radial distance (ΔR) cut could be used to further reduce rate ### Higgs self-coupling measurement - In order to determine the parameters of the SM completely, a measurement of the Higgs self-coupling is essential - Higgs potential and the EWSB mechanism - Measurement of double Higgs production - Destructive interference between diagrams with triple Higgs coupling and other diagrams | | σ_{HH} (fb) | |----------------------------------|--------------------| | $\lambda = 0$ | 71 | | $\lambda = \lambda_{SM}$ | 34 | | $\lambda = 2 \cdot \lambda_{SM}$ | 16 | ### Double Higgs production yields #### Event yields of various channels | | Decay channel | Branching ratio (%) | Yield with 3 ab ⁻¹ | |---|---------------------------------|---------------------|-------------------------------| | | $b \overline{b} b \overline{b}$ | 33.4 | 34,000 | | | $b\overline{b}W^+W^-$ | 25.0 | 25,500 | | | $b\overline{b} au au$ | 7.36 | 7,500 | | [| $W^{+}W^{-}W^{+}W^{-}$ | 4.66 | 4,750 | | | $bar{b}ZZ$ | 3.09 | 3,150 | | | ZZW^+W^- | 1.15 | 1,170 | | | $b \overline{b} \gamma \gamma$ | 0.26 | 265 | - Very challenging due to low yield and contributions from irreducible backgrounds ($t\bar{t}H,ZH$, etc.) - Ongoing studies suggest some sensitivity to constrain the triple Higgs coupling - Also, several phenomenological papers suggest this possibility #### MUON TRIGGER: TILE COINCIDENCE Main source of fake triggers are lowmomentum protons emanating from endcap toroid and shielding 1.0 < |η| < 1.3 region of Big Wheel TGC not covered by the NSW Use hadronic TileCal extended barrel (D-layer) for trigger coincidence - Energy resolution smeared by electronics noise in Level-1 readout path lowers efficiency above 500 MeV - Tile Muon coincidence reduces rate by 82% at that threshold #### TRIGGER SYSTEM ARCHITECTURE - New design for Phase II - 2-level system, Phase-I L1 becomes Phase-II L0, new L1 includes tracking - Make use of improvements made in Phase 1 (NSW, L1Calo) in L0 - Introduce precision muon and inner tracking information in L1 - Better muon pT resolution - Track matching for electrons,... - Requires changes to detector FE electronics feeding trigger system #### Level-0 Rate ~ 500 kHz, Lat. ~6 μs Muon + Calo #### Level-1 Rate ~200 kHz, Lat. ~20 μs Muon + Calo + Tracks Will also have new timing/control links and LHC interface system # ATLAS Silicon Strip tracker - * Outer tracker is a silicon strip detector with n-in-p sensors: - * 5 barrel layers, 7 discs EC, "stubs" - * Double-sided layers with axial strip orientation and rotated by 40mrad on other side (z-coordinate) - * Short (23.8 mm) and long strips (47.8 mm) with 74.5 µm pitch in barrel - * End-Cap with radial strips of different pitch (6 different module designs) - * Silicon Modules directly bonded to a cooled carbon fibre plate. - * A sandwich construction for high structural rigidity with low mass. - * Services integrated into plate including power control and data transmission.