ATLAS Upgrades Towards the High Luminosity LHC:
Extending the Discovery Potential

Diane Cinca, University of Glasgow
on behalf of the ATLAS collaboration

DIS 2014 - Warsaw
Before data-taking, expected in-time pileup (PU) was 23 (25ns BS (bunch spacing), design luminosity).

In 2012, average PU was regularly over 30 (50ns BS)

Inner Detector:
- High reconstruction efficiency
- Vertex reconstruction performing well

e/γ performances:
- Electron energy response and photon conversion reconstruction show excellent stability versus increasing pileup.

Jet/\text{E}_\text{T}^{\text{Miss}} performances:
- \text{E}_\text{T}^{\text{Miss}} reconstruction is performing well
- Stable resolution performances

Particle Identification:
- Identification efficiency is robust against pileup

DAQ and trigger:
- Developed algorithms are robust against pileup
- 21.7 fb$^{-1}$ recorded by ATLAS (94% DAQ efficiency)
Motivation for an upgrade

“Europe’s top priority should be exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.”

* Higgs boson precision measurements:
 * Expected uncertainties on signal strength reduced by a factor of 2-3 with HL-LHC.
 * Ratio of partial widths to measure ratios of couplings and probe New Physics.
 * SM Higgs rare decays and processes, e.g. $H \rightarrow \mu\mu$, and ttH can be measured.

* Higgs self-coupling in SM accessible only at HL-LHC.

* Probing New Physics:
 * SUSY and other New Physics beyond SM.
 * Enhancements in vector boson scattering amplitudes.
 * Rare processes, e.g. FCNC decays from top accessible to 10^{-5}.

Diane Cinca
The challenge

- Higher instantaneous luminosity means that more protons will collide in one event:
 - Pileup could reach up to 200 collisions per event.
 - Increased occupancy and saturation of available data transmission bandwidth.
 - Triggers rates cannot increase in line with luminosity so greater selectivity required to preserve efficiency.

- Higher integrated luminosity means higher total particle flux through detector:
 - Increased radiation damage (especially in inner layers).
 - Increased activation of the materials.

- The goal is to achieve the same (or better) performances (resolution, ...) at HL-LHC as at LHC, despite the large increase of event rate.
LHC roadmap

LHC startup, $\sqrt{s} = 900$ GeV

$\sqrt{s} = 7+8$ TeV, $L \sim 6 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 50ns

Go to design energy, nominal luminosity - Phase 0

$\sqrt{s} = 13-14$ TeV, $L \sim 1 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 25ns

Now!

Injector + LHC Phase I upgrade to ultimate design luminosity

$\sqrt{s} = 14$ TeV, $L \sim 2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 25ns

HL-LHC Phase II upgrade: Interaction Region, crab cavities?

$\sqrt{s} = 14$ TeV, $L \sim 5 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, luminosity levelling

Run 1

$\sim 25 \text{ fb}^{-1}$

Run 2

$\sim 75-100 \text{ fb}^{-1}$

Run 3

$\sim 350 \text{ fb}^{-1}$

$\sim 3000 \text{ fb}^{-1}$

From LHCC Open meeting, 03.12.2013

Diane Cinca
LHC roadmap

2009
LHC startup, $\sqrt{s} = 900$ GeV

2010
$\sqrt{s} = 7$+8 TeV, $L \sim 6 \times 10^{33}$ cm$^{-2}$s$^{-1}$, bunch spacing 50ns

2011
Go to design energy, nominal luminosity - Phase 0

2012
$\sqrt{s} = 13$–14 TeV, $L \sim 1 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25ns

2013
LS1

2014
Injector + LHC Phase I upgrade to ultimate design luminosity

2015
Run 1
~ 25 fb$^{-1}$

2016
Run 2
~ 75–100 fb$^{-1}$

2017
Run 3
~ 350 fb$^{-1}$

2018
LS2

2019
2020
2021
2022
2023
LS3

2024
HL-LHC Phase II upgrade: Interaction Region, crab cavities?

2025
$\sqrt{s} = 14$ TeV, $L \sim 5 \times 10^{34}$ cm$^{-2}$s$^{-1}$, luminosity levelling

2026
...

2035?

From LHCC Open meeting, 03.12.2013

Diane Cinca
LHC roadmap

2009
LHC startup, $\sqrt{s} = 900$ GeV

2010
$\sqrt{s} = 7 + 8$ TeV, $L \sim 6 \times 10^{33}$ cm$^{-2}$s$^{-1}$, bunch spacing 50 ns

2011
Go to design energy, nominal luminosity - Phase 0

2012
$\sqrt{s} = 13 - 14$ TeV, $L \sim 1 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25 ns

2013
Injector + LHC Phase I upgrade to ultimate design luminosity

2014
$\sqrt{s} = 14$ TeV, $L \sim 2 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25 ns

2015
HL-LHC Phase II upgrade: Interaction Region, crab cavities?

2016
$\sqrt{s} = 14$ TeV, $L \sim 5 \times 10^{34}$ cm$^{-2}$s$^{-1}$, luminosity levelling

Run 1
~25 fb$^{-1}$

Run 2
~75-100 fb$^{-1}$

Run 3
~350 fb$^{-1}$

~3000 fb$^{-1}$

From LHCC Open meeting, 03.12.2013

Diane Cinca
LHC roadmap

- LHC startup, $\sqrt{s} = 900$ GeV
- $\sqrt{s} = 7+8$ TeV, $L \sim 6 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 50ns
- Go to design energy, nominal luminosity - Phase 0
 $\sqrt{s} = 13-14$ TeV, $L \sim 1 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 25ns
- Injector + LHC Phase I upgrade to ultimate design luminosity
 $\sqrt{s} = 14$ TeV, $L \sim 2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, bunch spacing 25ns
- HL-LHC Phase II upgrade: Interaction Region, crab cavities?
 $\sqrt{s} = 14$ TeV, $L \sim 5 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, luminosity levelling

From LHCC Open meeting, 03.12.2013

Diane Cinca
Ongoing: Phase 0

* Long Shutdown 1: duration 18 months

* **LHC upgrades:**
 * Run 2 (2015-2018): $\sqrt{s}=13-14$ TeV, $L=1.10^{34}$ cm$^{-2}$s$^{-1}$, $<\mu>=27$, @ 25ns (start at 50ns), $-75-100$ fb$^{-1}$ expected
 * Consolidation of superconducting circuits
 * Replace/repair superconducting splices for 13 TeV energy and nominal peak luminosity

* **ATLAS upgrades:**
 * Insertion of an additional 4th pixel layer: Insertable B-Layer (IBL), Diamond Beam Monitor (DBM)
 * Completion of Muon Spectrometer Chambers added to improve acceptance for $1.0 <|\eta|< 1.3$ (Endcap Extension (EE) Muon Chambers)
 * New Pixel Service Quarter Panels (nSQP)
 * Usage of outer most layer of Tile Calorimeter for L1 Muon trigger

* **ATLAS consolidation:**
 * New Al/Be beam pipe
 * New evaporative Inner Detector cooling plant
 * New Low Voltage Power Supplies for the calorimeters
 * Power network, magnet cryogenics, services
Phase 0: Insertable B Layer (IBL)

* Physics motivations:
 * From $L = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ b-tagging efficiency will start to degrade.
 * Robust tracking in case of failures in the current pixel system.
 * Improves impact parameter resolution, vertexing, τ-reconstruction at high pileup.
 * Replace beam pipe.

* Insertable B-Layer (IBL)
 Additional pixel layer as innermost tracking layer
 * Important ingredient for low mass, rad-hard construction: 2 cm x 2 cm FE-I4 Pixel Chip, 130 nm CMOS process.
 * Sensors: planar pixel sensors and 3D.
 * Installation of IBL in the pixel detector, in the pit: May 2014.
 * Will stay until Phase-II (~7 years).

- Reduced material budget: 0.015 X_0
- Coverage: $z = 60 \text{cm}, |\eta| < 2.5$
- Sensors @33mm (now@50.5mm) => smaller beam pipe (29 -> 25mm)
- 14 staves with phi overlap
- No eta overlap due to clearance => minimize modules edge
Phase 0: Muon chambers

* Endcap Extension (EE) Muon Chambers
 * Installation of the chambers to address low efficiency in the region $1.0 < |\eta| < 1.3$
 * Need to bring Muon Small Wheel (9m diameter) on the surface out of the way of the IBL
 * New shielding at 7m: gap between forward calorimeter and shielding disk
LHC roadmap

- **2009**: LHC startup, $\sqrt{s} = 900$ GeV
- **2010**: $\sqrt{s} = 7+8$ TeV, $L \sim 6 \times 10^{33}$ cm$^{-2}$s$^{-1}$, bunch spacing 50ns
- **2011**: Go to design energy, nominal luminosity - Phase 0
- **2014**: $\sqrt{s} = 13\sim14$ TeV, $L \sim 1 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25ns
- **2018**: Injector + LHC Phase I upgrade to ultimate design luminosity
- **2020**: $\sqrt{s} = 14$ TeV, $L \sim 2 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25ns
- **2023**: HL-LHC Phase II upgrade: Interaction Region, crab cavities?
- **2035?**: $\sqrt{s} = 14$ TeV, $L \sim 5 \times 10^{34}$ cm$^{-2}$s$^{-1}$, luminosity levelling

From LHCC Open meeting, 03.12.2013
ATLAS upgrades - Phase 1

 * Run 3 (2020-2022): $\sqrt{s}=14$ TeV, $L=3.10^{34}$ cm$^{-2}$s$^{-1}$, $<\mu>-50-80$, @ 25 ns, -300 fb$^{-1}$ expected
 * Consolidation of injection chain, collimators

* **ATLAS upgrades:**
 * Fast Track Trigger at “Level 1.5”
 * Higher granularity and precision in L1 Trigger for calorimeter
 * New Small Wheels for the forward muon spectrometer
 * Topological (multi-object) L1 Trigger processors
 * Central Trigger Processor (CTP) upgrades
 * ATLAS Forward Physics (AFP), proton det. at ±210 m

Phase-I Upgrades should be forward compatible with Phase-II

In 2013, 4 TDRs for Phase-I construction projects were prepared within ATLAS, approved by CB and endorsed at the LHCC meeting (December 2013)
Fast track trigger

* Motivation: Track information at the start of Level 2.

* Dedicated, hardware-based track finder (based on CDF Silicon Vertex Triggering development)
 - Runs after the first level trigger on duplicated Si-detector read-out links
 Provides tracking input for the level-2 trigger for the full event
 * not feasible with software tracking at L2
 * Finds and fits tracks (~25 μs) in the ID silicon layers at an “offline precision”

* Processing performed in two steps:

Diagram:
- Hit pattern matching to pre-stored patterns (coarse)
- Subsequent linear fitting in FPGAs (precise)
Motivation: maintain high efficiency for Level-1 triggering on low P_T objects (electrons-photons)

- The current Level 1 EM calorimeter trigger uses:
 - E_T thresholds based on $\eta \times \phi = 0.1 \times 0.1$ trigger towers
 - No fine-grained EM sampling info available at L1 trigger to compute shower shapes

- LAr calorimeter Upgrade: changes on the front-end electronics to exploit finer granularity:
 - Computation of lateral and longitudinal shower shapes
 - Improve granularity of trigger for better discrimination between electrons and jets
 - Requires new trigger electronics located in replacement trigger daughter boards for the Front End boards.
New trigger readout architecture for LAr, forward and backward compatibility:

- On-detector: New layer sum and digitizer boards (LTDB)
- Off-detector: Digital Processing System (DPS) and Feature Extractor in L1Calo.

Better shower-shape discrimination:

- lower EM threshold by ~ 7 GeV at the same rate

In addition significantly improved resolution

- lower EM threshold by another few GeV at same rate
Consequences of luminosity rising beyond design values for forward muon wheels:
* Degradation of the tracking performance (efficiency / resolution)
* L1 muon trigger bandwidth exceeded unless thresholds are raised

Replace Muon Small Wheels with New Muon Small Wheels:
* Improved tracking and trigger capabilities
* Position resolution < 100 μm
* IP-pointing segment with $\sigma_0 \sim 1$ mrad
* Meets Phase-II requirements:
 * compatible with $\langle \mu \rangle = 200$, up to $L \sim 10^{34}$ cm$^{-2}$ s$^{-1}$
* Technology: MicroMegas and strip Thin Gap Chambers (sTGC)
LHC roadmap

2009
LHC startup, \sqrt{s} 900 GeV

2010
$\sqrt{s}=7+8$ TeV, $L\sim 6 \times 10^{33}$ cm$^{-2}$s$^{-1}$, bunch spacing 50ns

2011
Go to design energy, nominal luminosity - Phase 0

2012
$\sqrt{s}=13-14$ TeV, $L\sim 1 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25ns

2013
Injector + LHC Phase I upgrade to ultimate design luminosity

2014
Run 1
~25 fb$^{-1}$

2015
Run 2
~75-100 fb$^{-1}$

2016
Run 3
~350 fb$^{-1}$

2017
HL-LHC Phase II upgrade: Interaction Region, crab cavities?

2018
$\sqrt{s}=14$ TeV, $L\sim 2 \times 10^{34}$ cm$^{-2}$s$^{-1}$, bunch spacing 25ns

2019
$\sqrt{s}=14$ TeV, $L\sim 5 \times 10^{34}$ cm$^{-2}$s$^{-1}$, luminosity levelling

2020?

2021
From LHCC Open meeting, 03.12.2013
Goals for HL-LHC

Physics

Study EWSB Mechanism	Precision meas's of Higgs couplings (5-30%), Higgs self-coupling
Probe for signatures of New Physics	SUSY, Extra Dimensions,
Measure rare decay modes	Higgs, B, top,

Detector Requirements

<table>
<thead>
<tr>
<th>Example Physics/Detector Motivation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex SUSY cascades</td>
<td>Trigger & reconstruct low p_T e/μ</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>Trigger on τ's</td>
</tr>
<tr>
<td>High-mass gauge bosons</td>
<td>Good lepton e/μ momentum resolution at high p_T</td>
</tr>
<tr>
<td>Complex SUSY cascades</td>
<td>Identify Heavy Flavors</td>
</tr>
<tr>
<td>Resonances in top pairs, W, Z, H</td>
<td>Reconstruct leptons & b's in boosted topologies</td>
</tr>
<tr>
<td>VBF, Missing ET</td>
<td>Preserve acceptance in forward region</td>
</tr>
<tr>
<td>Efficient tracking with small fake rates</td>
<td>Radiation Tolerance and Granularity</td>
</tr>
<tr>
<td>Impacts Front End electronics</td>
<td>Compatibility with new trigger system</td>
</tr>
</tbody>
</table>
Goals for HL-LHC

Physics

<table>
<thead>
<tr>
<th>Study EWSB Mechanism</th>
<th>precision measure's of Higgs couplings (5-30%), Higgs self-coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe for signatures of New Physics</td>
<td>SUSY, Extra Dimensions,</td>
</tr>
<tr>
<td>Measure rare decay modes</td>
<td>Higgs, B, top,</td>
</tr>
</tbody>
</table>

Detector Requirements

<table>
<thead>
<tr>
<th>Example Physics/Detector Motivation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex SUSY cascades</td>
<td>Trigger & reconstruct low p_T e/μ</td>
</tr>
<tr>
<td>$H \rightarrow ττ$</td>
<td>Trigger on τ's</td>
</tr>
<tr>
<td>High-mass W/Z production</td>
<td>Improve e/μ momentum resolution at high p_T</td>
</tr>
<tr>
<td>Complex SUSY events</td>
<td>High efficiency for Heavy Flavors</td>
</tr>
<tr>
<td>Rare processes in top quark, W, Z, H</td>
<td>Reconstruct leptons & b's in boosted topologies</td>
</tr>
<tr>
<td>Weak boson production</td>
<td>Preserve acceptance in forward region</td>
</tr>
<tr>
<td>Efficient tracking with small fake rates</td>
<td>Radiation Tolerance and Granularity</td>
</tr>
<tr>
<td>Impacts Front End electronics</td>
<td>Compatibility with new trigger system</td>
</tr>
</tbody>
</table>

- Improved trigger inputs and algorithms and increased detector coverage
- New detector technologies required
ATLAS upgrades - HL-LHC

* **LHC (after LS3: duration - 30 months, 2023-2025)**
 * prepare for luminosity levelling
 * peak luminosity $5 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ (levelled), considered up to $7 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ ($<\mu>=200$) for safety, $\sim 3000 \text{ fb}^{-1}$ @ 14 TeV

* **ATLAS upgrades:**
 * All new Tracking Detector
 * Level-1 track trigger
 * Calorimeter electronics upgrades
 * Upgrade muon trigger system
 * Possible changes to the forward calorimeters
Inner TracKer (ITK)

Current Inner Detector - designed to operate for 10 years at $L=1.10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ with $\langle \mu \rangle = 27$, $\sigma_{25\text{ns}}$, $L_1=100 \text{ kHz}$

* Limiting factors at HL-LHC ($L=5.10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, $\langle \mu \rangle = 140$, 3000 fb^{-1}):
 * Bandwidth saturation (Pixels, SCT)
 * Increased occupancies (TRT, SCT) – up to 100% in TRT
 * Radiation damage (Pixels, SCT designed for 400 (700) fb$^{-1}$)

* Biggest changes compared to current tracker:
 * pixels system extends out to larger radii
 * more pixel hits in forward direction to improve tracking
 * smaller pixels and short inner strips to increase granularity
 * outer active radius slightly larger to improve momentum resolution
 * Remove Transition Radiation Tracker (TRT) as occupancy is too high during HL-LHC
 * Install new all-silicon tracker with pixels and strips
 * Granularity increases by a factor 4
L1 track trigger

* Adding tracking information at Level-1 (L1)
 * Move part of the “offline” High Level Trigger (HLT) reconstruction into the early stage of trigger
 * Goal: keep thresholds on pT of triggering leptons and L1 trigger rates low

* Triggering sequence
 * L0 trigger (Calo/Muon) reduces rate within ~6 μs to ≥ 500 kHz and defines RoIs
 * L1 track trigger extracts tracking info inside RoIs from detector FEs

* Challenge
 * Finish processing within the latency constraints

* Requires changes to detector FE electronics feeding trigger system
The ATLAS collaboration developed a detailed program to reflect the changes in the LHC conditions towards the HL-LHC, characterised by high track multiplicity and extreme fluences.

We aim at:

- maintaining/improving the present detector performance.
- ensuring optimal physics acceptance as the instantaneous luminosity increases.

The major ATLAS upgrades include:

Phase 0
- New Inner Pixel Layer
- Detector consolidation

Phase 1
- Improve L1 trigger capabilities to cope with higher rates
- Improve Muon system with nMSW

Phase 2
- Prepare for 200 pileup events
- Replace Inner Tracker
- New L0/L1 trigger scheme
- Upgrade muon/calorimeter electronics

An exciting new chapter is beginning!
ATLAS Forward Physics (AFP)

* Tag and measure scattered protons at +/- 210m
 * Link to system triggered in central ATLAS
 * Radiation-hard edgeless 3D silicon developed in IBL context
 * 10ps timing detector for association with high pT primary vertex
 * Probe hard diffractive physics and central exclusive production of heavy systems/particles
New LHC schedule beyond LS1

- **LS2**
 Starting in 2018 (July)
 18 months + 3 months BC (BC: Beam Commissioning)

- **LS3**
 Starting in 2023
 30 months + 3 BC

- **Injectors:** in 2024
 13 months + 3 BC
Higgs rare process/Decay projections

Signals only accessible with 3000 fb⁻¹ with errors limited by statistics

ttH production with H → γγ
- Direct access to Higgs-top coupling.
- Today’s sensitivity (30 fb⁻¹): 6xSM cross-section
- With 3000 fb⁻¹: expect 200 signal events > 5σ
- Higgs-top coupling can be measured to about 10%

H → μμ
- Gives direct access to Higgs couplings to fermions of the second generation.
- Today: 8xSM cross section
- With 3000 fb⁻¹ expect 17000 signal events and 7 σ significance
- Higgs-muon coupling can be measured to about 10%
Vector Boson Scattering

- Not yet observed - test of Higgs role in cancelling VBS divergence in SM can be measured to 30% (10%) with 300 (3000) fb⁻¹
- If new physics exists: sensitivity to anomalous triple or quartic couplings increases by factor of ~ 2 between 300 and 3000 fb⁻¹
In Phase-I, $ZH \rightarrow vvbb$ with 160 GeV E_T^{miss} trigger (XE40) would exceed total L1 rate due to pile-up jets faking missing energy.

- Increasing threshold rapidly costs signal efficiency.
- Combination with inclusive jet trigger brings rate down to ~10 kHz (still too high).
- L1Topo: cut on azimuthal distance between jet and E_T^{miss} ($\Delta \phi > 1$) reduces rate by ~45% with negligible loss in signal efficiency.
- Radial distance (ΔR) cut could be used to further reduce rate.

Example: exploit characteristic location of pile-up jets wrt E_T^{miss} vector.
Higgs self-coupling measurement

- In order to determine the parameters of the SM completely, a measurement of the Higgs self-coupling is essential
 - Higgs potential and the EWSB mechanism
 - Measurement of double Higgs production
 - Destructive interference between diagrams with triple Higgs coupling and other diagrams

<table>
<thead>
<tr>
<th>σ_{HH} (fb)</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>$\lambda = 0$</td>
</tr>
<tr>
<td>34</td>
<td>$\lambda = \lambda_{SM}$</td>
</tr>
<tr>
<td>16</td>
<td>$\lambda = 2 \cdot \lambda_{SM}$</td>
</tr>
</tbody>
</table>
Double Higgs production yields

Event yields of various channels

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Branching ratio (%)</th>
<th>Yield with 3 ab⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\bar{b}b\bar{b}$</td>
<td>33.4</td>
<td>34,000</td>
</tr>
<tr>
<td>$b\bar{b}W^+W^-$</td>
<td>25.0</td>
<td>25,500</td>
</tr>
<tr>
<td>$b\bar{b}\tau\tau$</td>
<td>7.36</td>
<td>7,500</td>
</tr>
<tr>
<td>$W^+W^-W^+W^-$</td>
<td>4.66</td>
<td>4,750</td>
</tr>
<tr>
<td>$b\bar{b}ZZ$</td>
<td>3.09</td>
<td>3,150</td>
</tr>
<tr>
<td>ZZW^+W^-</td>
<td>1.15</td>
<td>1,170</td>
</tr>
<tr>
<td>$b\bar{b}\gamma\gamma$</td>
<td>0.26</td>
<td>265</td>
</tr>
</tbody>
</table>

- Very challenging due to low yield and contributions from irreducible backgrounds ($t\bar{t}H, ZH$, etc.)
- **Ongoing studies suggest some sensitivity to constrain the triple Higgs coupling**
- Also, several phenomenological papers suggest this possibility
Muon Trigger: Tile coincidence

- Main source of fake triggers are low-momentum protons emanating from endcap toroid and shielding
- \(1.0 < |\eta| < 1.3\) region of Big Wheel TGC not covered by the NSW
- Use hadronic TileCal extended barrel (D-layer) for trigger coincidence
- Energy resolution smeared by electronics noise in Level-1 read-out path lowers efficiency above 500 MeV
- Tile Muon coincidence reduces rate by 82% at that threshold
Trigger system architecture

- New design for Phase II
 - 2-level system, Phase-I L1 becomes Phase-II L0, new L1 includes tracking
 - Make use of improvements made in Phase 1 (NSW, L1Calo) in L0
 - Introduce precision muon and inner tracking information in L1
 - Better muon pT resolution
 - Track matching for electrons,…
 - Requires changes to detector FE electronics feeding trigger system

Level-0
Rate ~ 500 kHz, Lat. ~6 µs
Muon + Calo

Level-1
Rate ~200 kHz, Lat. ~20 µs
Muon + Calo + Tracks

FTK technique is candidate for L1Track trigger

Will also have new timing/control links and LHC interface system
ATLAS Silicon Strip tracker

* Outer tracker is a silicon strip detector with n-in-p sensors:
 * 5 barrel layers, 7 discs EC, “stubs”

* Double-sided layers with axial strip orientation and rotated by 40mrad on other side (z-coordinate)
 * Short (23.8 mm) and long strips (47.8 mm) with 74.5 μm pitch in barrel
 * End-Cap with radial strips of different pitch (6 different module designs)

* Silicon Modules directly bonded to a cooled carbon fibre plate.

* A sandwich construction for high structural rigidity with low mass.

* Services integrated into plate including power control and data transmission.